
Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: Slack forms at two iterations are
identical, and SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Finding an Initial Solution 40

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.

Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize −x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leaving

Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − 2x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables

2x1 − 2x2 = 2x1 − (4
5 −

x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − 2x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − 2x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − 2x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

Theorem 29.13

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

III. Linear Programming Finding an Initial Solution 48

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 49

IV. Approximation Algorithms: Covering Problems
Thomas Sauerwald

Easter 2015

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems Introduction 2

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . .

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

We will call these approximation algorithms.

IV. Covering Problems Introduction 3

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

An algorithm for a problem has approximation ratio ρ(n), if for any input
of size n, the cost C of the returned solution and optimal cost C∗ satisfy:

max
(

C
C∗

,
C∗

C

)
≤ ρ(n).

Approximation Ratio

This covers both maximization and minimization problems.

Maximization problem: C∗

C ≥ 1

Minimization problem: C
C∗ ≥ 1

For many problems: tradeoff between runtime and approximation ratio.

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Approximation Schemes

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

IV. Covering Problems Introduction 4

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems Vertex Cover 5

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

Given: Undirected graph G = (V ,E)

Goal: Find a minimum-cardinality subset V ′ ⊆ V
such that if (u, v) ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

We are covering edges by picking vertices!

This is an NP-hard problem.

a

b

c

d

e

c

e

b

a

d

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Perform all tasks with the minimal amount of resources

Extensions: weighted edges or hypergraphs

IV. Covering Problems Vertex Cover 6

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

b c d

e f g

b c

e f

d

g

b d

e

Edges removed from E ′:
1. {b, c}
2. {e, f}
3. {d , g}

APPROX-VERTEX-COVER produces a set of size 6.

The optimal solution has size 3.

IV. Covering Problems Vertex Cover 7

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

|C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjaency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

	Finding an Initial Solution
	Introduction
	Vertex Cover

