Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

-..a % IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X4 = 8 — X1 — X2
X5 = Xo — X3

-..a % IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X5 = Xo — X3

|
I Pivot with x; entering and x4 leaving
\4

-,,a,-,, IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X4 = 8 — X1 — X2
X5 = Xo — X3

|
I Pivot with x; entering and x4 leaving
A4

N
Il
(o)

+ X3| — Xs

X1 = 8 — X2 — X4

N
;ihca l’s'-o next basic Solubon will be
vlentical Cin ow‘ECaiar, aéu'ecﬁve value
temaing the same)

.-,,I-, IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

|
I Pivot with x; entering and x4 leaving

A4
z = 8 + X3 — X4
X1 = 8 — X2 — X4
X5 = Xo — X3

i Pivot with x; entering and xs leaving
A\

.-,,I-, IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

|
I Pivot with x; entering and x4 leaving

\4
z = 8 + X3 — X4
X1 = 8 — X2 — X4
X5 = Xo — X3

i Pivot with x; entering and xs leaving

A\

_ _ ~ x Pivot with xp ent.

z = : Tox Xa XS‘ ard x, leav.
X1 = — X2 — X > (X‘, X, XS):(q g. g)
X3 = X2 - X Z2=46 +

IIl. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Zz = X+ X2 + X3
X4 = 8 — X1 — X2
X5 = Xo — X3

|
I Pivot with x; entering and x4 leaving

A4
z = 8 + X3 — X4
X1 = 8 — X2 — X4
X5 = Xo — X3

[Cycling: Slack forms at two iterations are] i Pivot with x; entering and xs leaving

identical, and SIMPLEX fails to terminate! | ¥
z = 8 + X - X4 — X5
X1 = 8 — X2 — X4
X3 = Xo — X5

J‘I% IIl. Linear Programming Simplex Algorithm 38

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

IIl. Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

J‘I% IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

-,,a,-,, IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies r) among | with CJ\"O
1. Bland’s rule: Choose entering variable with smallest index

IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
S

LRepIace each b; by b, = b; +E| where ¢; > €41 are all smaII.J

nl’buw(.om" noise

IIl. Linear Programming Simplex Algorithm 39

SE
8
- Ed

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = b; + €;, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7
Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports pr is un-
bounded or returns a feasible solution in at most|("™) iterations.

IIl. Linear Programming Simplex Algorithm 39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
S

LRepIace each b; by b = bi + ¢, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most ("J,;’") iterations.

2

Every set B of basic variables uniquely determines a slack
form, and there are at most (") unique slack forms.

@g IIl. Linear Programming Simplex Algorithm 39

Outline

Finding an Initial Solution

~'-.!»;. Ill. Linear Programming

Finding an Initial Solution

40

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo
Xy — 5%
X1, X2

IV AN IA

J‘I% IlI. Linear Programming

Finding an Initial Solution

41

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X1 — 5xo < —4
X1, X2 > 0

!

! . .

1 Conversion into slack form
|

A4

IIl. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X4 - 5% < -4
X1, X2 > 0
|
i Conversion into slack form
v
z = 2x1 — Xo
X3 = 2 — 2x + Xo
X4 = -4 - Xy + 5%
N

[Basic solution (x1, X2, X3, X4) = (0, 0,2, —4) is not feasible!]

% IIl. Linear Programming Finding an Initial Solution

Geometric lllustration

2X1 Xo

maximize
subject to

42

Finding an Initial Solution

IIl. Linear Programming

Geometric lllustration

)
= s
3t
=
N
% d
~
]
-
<
3
o

all
2

2X1

maximize
subject to

42

Finding an Initial Solution

IIl. Linear Programming

Geometric lllustration

maximize 2x1 — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2
X2

VAN IA

2

—4 | Questions:

0 = How to determine whether
there is any feasible solution?

= |f there is one, how to determine

/ Ly an initial basic solution?

E:g Ill. Linear Programming

Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

- n
maximize > i1 X
subject to
n
>ojo1 @i
Xj

IV IA

b fori=1,2,...
0 forj=1,2,...

J‘I% IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program

\-,,',-, IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x
subject to

Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n

1 Formulating an Auxiliary Linear Program
L i o ,
maximize Relax e,ac‘a conStrount

subject to
> a,',-x,']—xo] < b fori=1,2,....,m,
X > 0 forj=0,1,...,n

minimize X, the ‘distance from Bﬁ;ﬂj {eosiblp

\-,,',-, IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.

IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to .
[ZJI'7_:1ainj < b,-)fori:1,2,...,m,
x, > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
* Xg = 0 combined with X is a feasible solution to Laux with objective value 0.

\-,,',-, IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xo > 0 and the objective is to maximize —xg, this is optimal for Laux

\-,,I,;, IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to

b fori=1,2,...,m,
0 forj=1,2,...,n

n
>ojo1 @i
Xj

IV IA

i{ Formulating an Auxiliary Linear Program
maximize —Xo =0
—_

subject to

Zj’.’:1a,',-)q>x(< b fori=1,2,....,m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xo > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0

.

\-,,I,;, IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xo > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
_ = Then Xy = 0, and the remaining solution values (X1,X», ..., Xn) satisfy L.

J‘I% IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xo > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
_ = Then Xy = 0, and the remaining solution values (X1,X»,...,Xn) satisfy L. [

J‘I% IIl. Linear Programming Finding an Initial Solution 43

INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

AW -

let k be the index of the minimum b;
ity >0 // is the initial basic solution feasible?
return ({1,2,....n} , {n+1,n+2,..., n+m}y, A b, c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L .
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
if the optimal solution to L, sets X, to 0
if X, is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”

IIl. Linear Programming Finding an Initial Solution

44

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,...,n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let (N, B, A,b,c,v) be the resulting slack form for L,

6 I =n+k

7 /] L has n + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11 if the optimal solution to L, sets Xy to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

IIl. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,...,n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, - n -
5 e B.A,b,c,v) be the resulting slack form for L, £ will be the leaving variable so]
6 that x, has the most negative value.
7 /] L, has n + 1 nonbasic variables and m basic variables.
8 . .b,c,v) = PIVOT(N, B, A.b.c.v,[.0) -H‘
9 // The basic solution 1s now feasible for L . ; 6 N
10 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution {‘S e:h'g u (&S as e
10 Ly is found SG U.{:\ ol DECOW € Ky
11 if the optimal solution to L,y sets Xo to 0 .F . ‘f L .
12 if % is basic 6“9'(7[«(’, atter 'ntg
13 perform one (degenerate) pivot to make it nonbasic honw e 0.{‘\' v Cr)
14 from the final slack form of L, remove x, from the constraints and j
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
15 return the modified final slack form
16 else return “infeasible”

-,,', IIl. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,...,n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k that x, has the most negative value.

£ will be the leaving variable so

5

6

7 /] L, hasn + 1 nonbasic variables and m basic variables.

g (N.B.A.b,c,v) = PVOT(N, B, A, b.c.v.1,0) ‘(Pivot step with x, leaving and xp entering.]
0

// The basic solution is now feasible for L .

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11 if the optimal solution to L, sets Xy to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

IIl. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+
INITIALIZE-SIMPLEX (4, b,) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,...,n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k that x, has the most negative value.

£ will be the leaving variable so

5

6

7 /] L, hasn + 1 nonbasic variables and m basic variables.

g (N.B.A.b,c,v) = PVOT(N, B, A, b.c.v.1,0) ‘(Pivot step with x, leaving and xp entering.]
0

// The basic solution is now feasible for L .
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11 if the optimal solution to L,,, sets Xo to 0 This pivot step does not change

12 if o is basic) . . the value of any variable.

13 perform one (degenerate) pivot to make it nonbasic

14 from the final slack form of L, remove x, from the constraints and J/
restore the original objective function of L, but replace each basic o _ |
variable in this objective function by the right-hand side of its Cﬂ_u‘s‘e)(0 = O .

associated constraint
15 return the modified final slack form
16 else return “infeasible”

ggg IIl. Linear Programming Finding an Initial Solution 44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo < 2 u »
X1 — bx < --—) Comonical Lﬁ.i‘ e
X1, X2 > 0 Solu{-\“cw S net

feasiple !

.-,,!,;, IIl. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2

IV IAIA

£
Gl
YEY

IIl. Linear Programming Finding an Initial Solution

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2xy - X2 <
X1 — 5X2 <
X1, Xo >

maximize —Xo
subject to
2X1 — Xo —
X1 — 5X2 —
X1, X2, Xo

Xo
Xo

IV AN IA

ggg IIl. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo < 2
Xy — 5xo < -4
X1, X2 > 0

maximize —Xo
subject to
2xy — X2 - X < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo > 0

|
| Converting into slack form
v

ggg" IIl. Linear Programming Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

Z =
X3 =
X4 =

2X4 — X2
2X1 — Xo < 2
XX - 5 < -4
X17X2 2 O
|
1 Formulating the auxiliary linear program
v
2xy - Xo — X < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo Z 0
|
| Converting into slack form
v
2 — 2 4+ X 4+ X
-4 - XX + 5% + X

Ill. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

2X1

2X1
Xi

2X1
X4

[

Basic solution

(0,0,0,2,—4) not feasible!

N
Z =
X3 = 2
X4 = —4

_ Xo
— Xo < 2
— 5X2 < —4
Xq 9 X2 2 O
I
I
l
v
— Xo — X0
— 5X2 — Xo

X1, X2, Xo

J

\4

- 24 + X2
— X1+ 5x

IV AN IA

=+
+

Converting into slack form

Xo
Xo
Xo

E:g Ill. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (2/3)

Z =
X3 = 2 — 2Xx -+ X2

x =8 - % + 5x

+
+

Xo
Xo
Xo

\-,,',-, IIl. Linear Programming Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 2x1 + X2 + X
X2 = -4 — X1+ 5% + X

T —
!

i Pivot with xo entering and x4 leaving

v (thig daatngmt&” pivot step
ensures all bugic voriables are
non- neaa’c-‘v&J

\-,,',-, IIl. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 — 2 4+ X + X
Xs = -4 - X1+ 9% + X

|
i Pivot with xo entering and x4 leaving
|

\4

= -4 — X4 + 5x — X4
Xo + x5 - 5% 4+ X
X3 = — X1 — 4X2 + X4

=2+

.

J‘I% IIl. Linear Programming Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

[Basic solution (4,0,0,6,0) is feasible!]

V4 = — Xo

X3 = 2 — 2Xx + X2 + Xo

X3 = -4 - X + 5 + X
I
[. . .
! Pivot with xo entering and x4 leaving
\Z

z = -4 — x5 4+ 5 - x

Xo = 4 + xi — 5 + x4

X3 = 6 — X1 — 4x + X4

IIl. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 — 2 4+ X + X
X2 = -4 - X1+ 5% 4+ X

|
i Pivot with xo entering and x4 leaving
|

Y

z = 4 — X3 4+ B - x4

Xo = 4 + x4 — bx + Xa

X3 = 6 — X1 — 4X2 + X4

” |
[Basic solution (4,0,0,6,0) is feasible!] | Pivot with X, entering and x, leaving

v

V4 = — Xo

o = 14 + 4 _ 9x + X

s = B 5 5

E:g‘ Il Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 — 2 4+ X + X
X3 = -4 - X + 5 + X
|
1 Pivot with xo entering and x4 leaving
v
z = 4 — X3 4+ B - x4
Xo = 4 + x4 — bx + Xa
X3 = 6 — X1 — 4X2 + X4
” |
[Basic solution (4,0,0,6,0) is feasible!] | Pivot with x, entering and x, leaving
v
V4 — X0
x = £ - 2+ 2B o4+ 2
o = 14 + 4 _ 9x + X
s = B 5 5 5
N

[Optimal solution has xo = 0, hence the initial problem was feasible!j

Ill. Linear Programming

Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (3/3)

z
X2 =

X3 =

- X
X

g - 2o+

1B, 4%
5 5

o

olxulx

IIl. Linear Programming

Finding an Initial Solution

47

Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
— 4 _ Xo Xt X4
X = 3 5 T 5 T 3
xw = 14 . 4 9% 00X
S 5 5 5

Set xo = 0 and express objective function
by non-basic variables

ggg IIl. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
) X X
—
X 9% X
t 5 5 T 3

Set xo = 0 and express objective function
by non-basic variables

<44444

[2X1 —2X2—2X1 = % x-}—%-f—%)}

- 4 Xt X4

Egg‘ Il Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = — X
3 = 14 . 4 9 00X
& 5 5 5 5

Set xo = 0 and express objective function
by non-basic variables

<44444

[2X1 = 2X2 = 2X1 — (% — XU + +)J

< B 4 9x- SLQGR ‘FO‘FI'Y\
z *5 + TX1 f‘e,‘turhﬂo{ 65
x = § o+ 7 INITiaLi2E-§IMP LEX
e = 14 99X
3 5

g
[Basm solution (0, 2, ¥, 0), which is feamble']
‘—-_-_1_

L—j Moin Loop of SINPLEX
can le nou execn-tw(

Egg‘ Il Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = — Xo
4 Xo Xi X4
T S
- 14 A0 0 I9M 24
X = 5 T 3 5 T 35

Set xo = 0 and express objective function
by non-basic variables

ol &
—
—/
<----

[2x1—2x2:2x1—(%—%0+5+_

N _ 4 9x4 X4
; 3% Lk

X A A4

X3 = % — % + ﬁ

1
[Basic solution (0, 2, ¥, 0), which is feasible!]

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

%‘ Il Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Theorem 29.13
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or

3. is unbounded.

N
\

[If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns }

“unbounded”. Otherwise, SIMPLEX returns anwith a finite objective value.
T .
proof nom~teivial and vequires
CO*\CQ(J't of ”duaL Linear Projfam'_"
CCLRS3, Chaypter 2947

Egg‘ Il Linear Programming Finding an Initial Solution 48

Linear Programming and Simplex: Summary

Linear Programming

,,a 5 IIl. Linear Programming Finding an Initial Solution

49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds

-.,a,-,, IIl. Linear Programming Finding an Initial Solution

49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

-.,a,-,, IIl. Linear Programming Finding an Initial Solution

49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

.-,,!,,, IIl. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

need exponential time .X1
\

IIl. Linear Programming Finding an Initial Solution

49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

> d'rﬂ%,vehé ruleg leco 1o
ofnﬁ'erehf instantiobons of
SinrLex

J‘I% IIl. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

IIl. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

X

"

J‘I% IIl. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!) \

mo r\e)i Cem pL(ca{:dol

IIl. Linear Programming Finding an Initial Solution 49

IV. Approximation Algorithms: Covering Problems

Thomas Sauerwald

Easter 2015

5.7 UNIVERSITY OF
2P CAMBRIDGE

Outline

Introduction

.-,,!,;, IV. Covering Problems Introduction

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

\-,,',-, IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. Ifinputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Introduction 3

Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

o~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. .]

——— Strategies to cope with NP-complete problems

1. Ifinputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

—[We will call these approximation algorithms.]

IV. Covering Problems Introduction 3

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c Cr
_ < .
max (C*’ c) < p(n)

-,,a,-,, IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax ()) p(n)

N

\

(This covers both maximization and minimization problems.]

.-,,',-, IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

ax (CC’%) <o | Maximization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

\-,,',-, IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

\-,,',-, IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

max(C C*) <o) | Maximization problem: & > 1

cr’ C » Minimization problem: £ > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]
vV

o
E:E IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

*

= Maximization problem: < > 1

max | —, —= < p(n)
(C* c) * Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

——— Approximation Schemes

IV. Covering Problems

Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax ()) p(n)

= Maximization problem: < > 1

* Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

nlm IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax ()) p(n)

= Maximization problem: < > 1

* Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n.

nlm IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax (=) p(n)

= Maximization problem: < > 1

* Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J

o
nlm IV. Covering Problems Introduction 4

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax (=) p(n)

= Maximization problem: < > 1

* Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J
= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n.

o
l-‘lm IV. Covering Problems Introduction 4

\,'.-,

Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

c C
m = Z)< .
ax (=) p(n)

= Maximization problem: < > 1

* Minimization problem: & > 1

N

\] £
vV

(This covers both maximization and minimization problems.]

[For many problems: iradeoff between runtime and approximation ratio.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(nZ/E)J
= Itis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)? - n3).)

\-,,I,;, IV. Covering Problems Introduction 4

Outline

Vertex Cover

.-,,!,;, IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenue V' orve V.

.-,,!,-, IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenue V' orve V.

.-,,!,-, IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

such that if (u,v) € E(G),thenue V' orve V.

.-,,!,-, IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V
such that if (u,v) € E(G),thenue V' orve V.

\-,,',-, IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V
such that if (u,v) € E(G),thenue V' orve V.
N\

[This is an NP-hard problem.]

J‘I% IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)
= Goal: Find a minimum-cardinality subset V' C V

N

such that if (u,v) € E(G),thenue V' orve V.

[This is an NP-hard problem.]

Applications:

J‘I% IV. Covering Problems Vertex Cover

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenue V' orve V.

N

[This is an NP-hard problem.] o

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

J‘I% IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenue V' orve V.
) ©
[This is an NP-hard problem.] o
Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources

J‘I% IV. Covering Problems Vertex Cover 6

The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem

= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V G
such that if (u,v) € E(G),thenue V' orve V.

N\

A\

[This is an NP-hard problem.] o

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources

= Extensions: welghtededgesor hypergraphs
Verticeg

.

J‘I% IV. Covering Problems Vertex Cover 6

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER (G)
C =90
E'=G.E
while £’ # 0

1

2

3 .

4 fet (. v) be an atbirary edge of £ _s5 patertially man Y chorees
5 C =CU{u,v}

6

7

remove from E’ every edge incident on either u or v
return C

.-,,I-, IV. Covering Problems Vertex Cover 7

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (u, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N O A

IV. Covering Problems Vertex Cover

£
Gl
VY

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (u, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N O A

J‘I% IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

J‘I% IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

\-,,I,;, IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

S

v
v
’

® G—0 ©

\-,,I,;, IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

S

v
v
’

®d G—0 ©

\-,,',-, IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

N

v
v
’

®d G—0 ©

\-,,',-, IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E' = G.E
while £’ # 0
let (u, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N o B

® 0L

S

v
v
’

® @G ©

[APPROX-VERTEX-COVER produces a set of size 6.]

ggg IV. Covering Problems Vertex Cover

An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E' = G.E
while £’ # 0
let (u, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N o B

[The optimal solution has size 3.]

ggg IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

.-,,I-, IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

\-,,',-, IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
-—-—l-"'-'_-_"

Proof:
= Running time is O(V + E) (using adjaency lists to represent E’)

\-,,',-, IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:
= Running time is O(V + E) (using adjaency lists to represent E’)
= Let A C E denote the set of edges picked in line 4

J‘I% IV. Covering Problems Vertex Cover

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,

i
E:E IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edee incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

i
E:E IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

YE
S8
- kd

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let Ly, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

= Every edge in A contributes 2 vertices to |C|:

2
IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| ‘

1
IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint:

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| N ‘

1
IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢
2 E'=G.E
3 while £ # 0
4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}
6 remove from E’ every edge incident on either u or v
7 return C
Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.]
Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)
= Let A C E denote the set of edges picked in line 4
= Every optimal cover C* must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: | |C*| > |A|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| < 2|C"|. ‘ O

1
IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)
1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7

without knowing the (size of an) optimal solution!

return C I We can bound the size of the returned solution]

Theorem 35.1 -
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

= Running time is O(V + E) (using adjaency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: | |C*| > |A|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| < 2|C"|. ‘ O

ggg IV. Covering Problems Vertex Cover 8

	Finding an Initial Solution
	Introduction
	Vertex Cover

