Outline

Formulating Problems as Linear Programs

e 5 IIl. Linear Programming Formulating Problems as Linear Programs

22

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

e 5 IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

s
IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

s
IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to

IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to
d < dv + w(u,v) foreachedge (u,v)cE,

IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize O

subject to
d < d + w(uv)
d = 0.

for each edge (u, v) € E,

IIl. Linear Programming

Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize O
subject to
d, + w(u,v) foreachedge (u,v)e€E,

0.

dv

7 d
[this is a maxi- 1 s

mization problem!)

A

s
IIl. Linear Programming Formulating Problems as Linear Programs 23

S

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

maximize ai all these inequalities are satisfied.

subject to =
dv d, + w(u,v) foreachedge (u,v)e€E,

% d 0
this is a maxi- 1 s '
mization problem!)

Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

A

i
IIl. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

maximize O
subject to =
Y d < dv + w(u,v) foreachedge (u,v)cecE,
this is a maxi- b = 0 ~-
mization problem! Solution d satisfies dy (Eminu. u,ee {Bu + w(u, v)}]

i
IIl. Linear Programming Formulating Problems as Linear Programs 23

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

Bl IIl. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

0/10

e
Ill. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

0/10

e
Ill. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

cut ({S 3} {2 Lf S‘t}) L\OLS Colfpao‘é
404—3#43 3 f s max—flo,,

Hu‘x ~Flow H 1 h*(_-o\.ﬁ jﬂﬁﬂhexm

e 5 Ill. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

-~ —_—
)

—

o 0 = 19

) 0/2

O O @®

Maximum Flow as LP

maximize lzvevfsv - Devhs

subject to
for < c(u,v) foreachu,veV,
Dweviw = Y ,cyfw foreachue V\{s,t},
fon > 0 foreachu,veV.

e 5 IIl. Linear Programming Formulating Problems as Linear Programs 24

Minimum-Cost Flow

[Generalization of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

a5 IIl. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

[Generalization of the Maximum Flow Problem]

Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

a5 IIl. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

[Generalization of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while

minimising the total cost _ ,)¢ a(u, v)fu incurrred by the flow.

a5 IIl. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

[Generalization of the Maximum Flow Problem]

Minimum-Cost-Flow Problem A
= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°,)¢ a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

a5 IIl. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

[Generalization of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3 a(u, v)fy incurrred by the flow.

u,v)eEE

[Optimal Solution with total cost:

2wnee AU V)fuy = (2:2)+(5-2)+(3-1) +(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

e
IIl. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow as a LP

minimize
subject to

Minimum Cost Flow as LP

Z(u,v)EE a(u7 V)fUV

IA

c(u,v) foreachu,veV,
foreach u e V\ {s,t},

fuv

Zvev fu — ZVEV fuv

= 0
Zvevfsv - Evevas = _d,
> 0

I fuv

for each u,v € V.

Only new
conStrount

IIl. Linear Programming Formulating Problems as Linear Programs 26

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize P wwyee U, V)fu
subject to
fw < c(u,v) foreachu,veV,
veviu =2 eyfw = 0 foreachu e V\ {s,t},
Zvevfsv - Evevas = d,
fw > 0 for each u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

B IIl. Linear Programming Formulating Problems as Linear Programs 26

Outline

Simplex Algorithm

IIl. Linear Programming

Simplex Algorithm

27

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

IIl. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

fubuf-ﬂ
of glack
form

hew

deag

Basic Idea:

= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one

basic and one non-basic variable

gﬁ 1Il. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, itis a greedy algorithm. |

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

gﬁ 1Il. Linear Programming Simplex Algorithm 28

Extended Example: Conversion into Slack Form

maximize 3x; + X + 2X3
subject to
Xy + x + 3x < 30
2X4 + 2x + 5x3 < 24
4xq + X2 + 2X3 < 36
X1, X2, X3 > 0

IIl. Linear Programming Simplex Algorithm

Extended Example: Conversion into Slack Form

maximize
subject to

3xy 4+ X2 + 2X3

X+ x + 3x < 30

2X4 + 2x + 5x3 < 24

4xq + X2 + 2X3 < 36
X1, X2, X3 Z 0

Conversion into slack form

IIl. Linear Programming

Simplex Algorithm

29

Extended Example: Conversion into Slack Form

maximize 3x; + X + 2X3
subject to
X4 + X2 + 3x3 <
2x1 + 2x + 5x3 <
41 + X + 2x3 <
X1, X2, X3 >
|
|
v
z = 3X1
X4 = 30 — X1
Xs = 24 — 2x4
Xs = 36 — 4x

+

30
24
36

0

X2
X2
2X2
X2

Conversion into slack form

2X3
3X3
5X3
2X3

ggg IIl. Linear Programming

Simplex Algorithm

29

Extended Example: Iteration 1

z =
Xs = 30
X5 = 24
Xs = 36

3X1

— 2X1

— 4x4

X2
X2
2Xo

X2

2X3
3X3
5X3

2X3

IIl. Linear Programming

Simplex Algorithm

Extended Example: Iteration 1

z =
X =] 30
x5 =| 24
Xs =] 36

3X1
— 2X1

— 4 x4

+

X2
X2
2Xo

X2

7
[Basic solution: (X7, %z, ..., Xs) = ‘]

ZX?‘
3X3
5X3

2X3

J‘I% Ill. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 1

z = 3xi + X2

x4 = 30 -— X1 - Xo

Xxs = 24 — 2x9 - 2x

X = 36 — 4x5 - Xo
7

[Basic solution: (X1, Xz, ...,Xs) = (0,0, 0, 30,24, 36)]

N
/1

[This basic solution is feasible]

2X3
3X3
5X3

2X3

Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 1

z = 3xi + X2

x4 = 30 -— Xy - Xo

Xxs = 24 — 2x9 - 2x

X = 36 — 4x; — X2
7

[Basic solution: (X7, Xz, ..., Xs)

= (0,0,0,30,24,36) j
N
\

N
/1

[This basic solution is feasible] [Objective value is 0.]

2X3
3X3
5X3

2X3

Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

/4
z = + X2 + 2x3
Xs = - x]- o - 36 X, \< -3:1—0 =30
X5 = — 2X4 — 2Xo — 5X3 <_2'_q -
Xs = —| 4x1| - X: - 2X 3
6 1 2 3 Xq \(_l;g - j

[Basic solution: (X1, Xz, ...,Xs) = (0,0, 0, 30,24, 36)]
N
\

N
/1

[This basic solution is feasible] [Objective value is 0.]

%‘ IIl. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;1 + Xo + 2X3
xx = 30 — xx — x - 3x X4 \< -3:1—0 =30
s = 24 — 24 — 26 - 5x X, \< .2'_;' =19
X6 = 36 — 4x; — X% — 2x)(,| < 3¢ - j

N

[The third constraint is the tightest and limits how much we can increase x;.

— &

Ill. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

/4
z = 3y + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
X5 = 24 — 2X4 — 2Xo — 5X3
@ = 36 -— 1 4x1' - X2 — 2X3
~ -
[The third constraint is the tightest and limits how much we can increase x;]

\
p
Switch roles of x; and xs:

~

Eﬁ Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3y + Xo + 2X3
x4 = 30 -— Xy - X2 — 3x3
Xs = 24 — 2xX1 — 2Xx2 — 5x3
X = 36 — 4x5 - Xo — 2X3

N

[The third constraint is the tightest and limits how much we can increase x;]

N

\

-
Switch roles of x; and xs:
= Solving for xq yields:

~

new valae of x, 1~ the next
J

|"E®rn,-‘:{o a)

Eg Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

/4 L
z - B+ o o+ 2n St
x4 = 30 -— X1\ — X2 — 3x3 operations in
o4 5 \ 5 5 wifien Hl-ﬂi; 6

Xs = - X1 \| — Xo — X:

5 "1\ 2 3 \“7'
X = 36 — 4x1\ } - X — 2x3 HRE?&SL“K focn,
CT"“"CHL

N

[The third constraint is the tightest and limity how much we can increase x;]

N

\

-
Switch roles of x; and xs:
= Solving for xq yields:

-

= Substitute this into x; in the other three equations

~

% Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 2

= X2 X3 3%
z = 27 + vl > Z
— _ X2 _ X3 _ Xe
o= 9 4 2 4
- _ 3 _ 5% X
= 2 4 2 T 2
_ _ 3 Xe
X5 = 6 > 4x3 + >
é:é IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

X1 =
X4 =

X5 =

[Basic solution: (X1, X2,...,Xs) = ﬁ,@@@@) with objective value 27]

ggg IIl. Linear Programming Simplex Algorithm 80

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %_%
xsze—%—4x3+%
N

[Basic solution: (X1, Xz2,...,Xs) = (9,0, 0,21, 6,0) with objective value 27]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %_%
xsze—%—4x3+%
N

[The third constraint is the tightest and limits how much we can increase x;;.]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N

= X2 X3 _ 3%
z = 27 + 2 + > Z

_ _ X _ X3 _ X
o= 9 Z 2 7

_ _ 3 _ 5% Xo
X o= 2 4 2 T 2
Xs = 6 - % - 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase xs.j
)

(N\
Switch roles of x; and xs:

Eﬁ Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N

= X2 X3 _ 3%
z = 27 + 2 + > Z

_ _ X _ X3 _ X
o= 9 Z 2 7

_ _ 3 _ 5% Xo
X o= 2 4 2 T 2
Xs = 6 - % - 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase xs.j
)

(N\
Switch roles of x; and xs:

= Solving for x; yields:

Eﬁ Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N

= X2 X3 _ 3%
z = 27 + 2 + > Z

_ _ X _ X3 _ X
o= 9 Z 2 7

_ _ 3 _ 5% Xo
X o= 2 4 2 T 2
Xs = 6 - % - 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase xs.j
)

(N\
Switch roles of x; and xs:

= Solving for x; yields:

= Substitute this into x3 in the other three equations
(. J

Eﬁ Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

- 11
2 = 7
X1 = 34—3
X3 = %
X4 = 64—9

o1
OfF sl wpx ol

o
> ool 03|a>,<

-
o

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 3

- 11 X _ ox _ 11
zZ = =5 T 76 8

- 38 _ X Xs _ DX
o= 7 6 = B 16

_ 3 _ %% _ x X
5= 3 8 2 8

_ 69 3x2 5x X
Xa 4 t T T B 16

N

[Basic solution: (X1, %z,...,%s) = (2,0, 3, 2,0,0) with objective value 11 = 27.75]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N
N

[Basic solution: (X1, %z,...,%s) = (2,0, 3, 2,0,0) with objective value 11 = 27.75]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

[The second constraint is the tightest and limits how much we can increase xz.j

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

N

[Increasing the value of x, would increase the objective value.]

[

The second constraint is the tightest and limits how much we can increase xs.

N

)

A\

P
Switch roles of x> and x3:

~

Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 3

N
_ 111 X2 X5 11X
zZ = 7 * 738 8 16
-~ 38 _ X X5 SXs
o= 7 6 '~ 8 16
& 2 8 4 8
_ 69 3x2 5x5 X
X = 4 T 35 T 3 16

[Increasing the value of x, would increase the objective value.]

[

The second constraint is the tightest and limits how much we can increase xs.

N

)

\
(A
Switch roles of x; and x3:
= Solving for x; yields:
8% 2Xs Xs
Xo = 4 — _)_E] = —2 db ==
2 3 3 3
J

Ill. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 3

N

[Increasing the value of x, would increase the objective value.]

[

The second constraint is the tightest and limits how much we can increase xs.

N

)

-

\
(A
Switch roles of x» and xs:
= Solving for x; yields:
Xo = 4 — % — % ﬁ
3 3 3
= Substitute this into x» in the other three equations
J

Ill. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 4 (:: &{{Q/F HS&rQ i ow 3)

x = 18 - 2 4+ 2

o
J‘I% IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

X4 = 18 %4’%
N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

A\
z:28(— %—%—@
x4:187%+%
N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28]

% Ill. Linear Programming Simplex Algorithm 30

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)

(0,0; ®(8,4,0)
(8.25,0,1.5) @
- X1
(9,0,0)

J‘I% IIl. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

X3

X2

(0,12,0)
12

®(8,4,0)
(8.25,0,1.5) @ 28
27.75

X4

(9,0,0)
27

J‘I% IIl. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

X3

; ﬁ:bqg ‘C S‘O[b\“\on\s
(0,12,0) ('FQD‘S l(_, /hfhg)

=) ()

=20 !

e (8,4,0)
(8.25,0,1.5) ® 28
27.75

X4

(44 32 26) (9.0,0)

theassb le bogic colution
IIl. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
ARA
8,40
: (8.25,0,1.5) @ & 28)
27.75 42.
(9,0,0)
27

', IIl. Linear Programming Simplex Algorithm

31

Extended Example:

Alternative Runs (1/2)

z =
X4 = 30
X5 = 24
Xs = 36

3+
X1 —
2Xq —

4X1 —

X2
X2
2Xo

X2

2X3
3x3
5Xx3

2X3

IIl. Linear Programming

Simplex Algorithm

32

Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — X2 — 3x3
X5 = 24 — 2Xq — 2Xo — 5Xx3
X = 36 — 4xy — Xo — 2X3

|
} Switch roles of x> and xs
\4

\-,,I,;, IIl. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2) (AR'] " tl\a. [”wﬁm-f{m]

z = 3x + X2 + 2x3
X4 = 30 — X4 — X2 — 3x3
X5 = 24 — 2Xq — 2Xo — 5Xx3
X = 36 — 4xy — Xo — 2X3

|
} Switch roles of x> and xs

M X: Xe
z = 12 + 2% - 73 - ?5
_ _ _ % X%

X2 = 12 X1 > >
X4 = 18 — X2 - % + %
X = 24 — 3x + ’;3 + %

IIl. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — X2 — 3x3
X5 = 24 — 2Xq — 2Xo — 5Xx3
X = 36 — 4xy — Xo — 2X3

|
} Switch roles of x> and xs

z = 12 + §x1 — % - %
Xo = 12 — X4 — 5—;(3 — %
Xy = 18 - X2 - % + %
X = 24 - % + 2 + 2
i Switch roles of x; and xg
\4

IIl. Linear Programming Simplex Algorithm

Extended Example: Alternative Runs (1/2)

Xa
X5

Xe

X2

Xa

X

X4

X2

Xa

30
24
36

3x

X1
2Xq
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5Xx3

2X3

|
} Switch roles of x» and xs

A\

2X1
X1
X2

3x1

+

X3
2
5x3
2
X3
2
X3
2

—+

+

|
| Switch roles of x; and xg

IIl. Linear Programming

Simplex Algorithm

32

Extended Example:

Alternative Runs (2/2)

(AR 2)

X4 =
X5 =

Xe =

30
24
36

3+
X1 -
2X1 —

4x4 —

X2
X2
2Xo

X2

2X3
3x3
5x3
2X3

IIl. Linear Programming

Simplex Algorithm

33

Extended Example: Alternative Runs (2/2)

z = 3+
X4 = 30 - X1 —
X5 = 24 — 2xq —
Xs = 36 — 4x —

!
v

X2
X2
2Xo

X2

2X3
3x3
5x3
2X3

Switch roles of x3 and xs

\-,,I,;, IIl. Linear Programming Simplex Algorithm

Extended Example:

Alternative Runs (2/2)

X4
X5

X

X4

X3

Xe

= 30
= 2

4
R o ol ol

3+
X1 —
2X1 —

4x4 —

!

l
A\

11X1
5
X

|

2X4
5
16X1
5

X2
X2
2Xo

X2

+ 2X3
— 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

oo_ 2
5 5
% 3%
5 T 5
e _ %
5 5
x 2%
5 T 5

IIl. Linear Programming

Simplex Algorithm

33

Extended Example: Alternative Runs (2/2)

Xy =
X5 =

X6 =

Xy =

X3 =

X6 =

Switch roles of x; and xg

L

30
24

I
co

8 IR olg o

\ —
"

3x1 +
Xy —
2X1 —

4x4 —

|

l
\4

11x4
5
X

|

2X4
5
16X1
5

X2
X2
2Xo

X2

+ 2X3
- 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

X _ 2%
5 5
% 3%
5 T 5
2 %
5 5
x 2%
5 T 5

IIl. Linear Programming

Simplex Algorithm

33

X1

X3

X4

Extended Example:

Alternative Runs (2/2)

—

2 _
X4 30
X5 = 24
X6 = 36
= 48
z 5
78
X4 5
24
X3 = 5
132
X6 5
Switch roles of xy and xg _ -~
"
X _ X
1 8
X2 X5
w t 3 -
3x2 X5
-
3x2 5xs
% t B

S8 oo A8 J>|

3x +
X1 —
2X1 —

4x4 —

!
v

1 1X1
o=
X1
+ 5
2X4
5
16X1
5
11xs
6
5xg
6
X
8
X6
16

X2
X2
2Xo

X2

+ 2X3
— 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

oo_ 2
5 5
% 3%
5 t 5
e _ %
5 5
x 2%
5 T 5

IIl. Linear Programming

Simplex Algorithm

33

X1

X3

X4

Extended Example:

Alternative Runs (2/2)

—

S8 oo A8 J>|

Z =
X4 = 30
X5 = 24
X6 = 36
= 48
z = 5
= 78
Xy = 5
= 24
X3 = 5
- 132
Xs = 5
Switch roles of xy and xg _ -~
"
X _ X
16 8
X2 X5
w t 3 -
3x2 X5
-
3x2 5xs
% t B

3x +
X1 —
2X1 —

4x4 —

!
v

"~~~ _ Switch roles of X and x

1 1X1
o=
X1
+ 5
2X4
5
16X1
5
11xs
6
5xg
6
X
8
X6
16

X2
X2
2Xo

X2

X2
5
X2
5
2Xo
5
X2

5

N

2X3
3x3
5x3
2X3

Switch roles of x3 and xs

+

IIl. Linear Programming

Simplex Algorithm

33

X1

X3

X4

Extended Example:

Alternative Runs (2/2)

X4
X5

X

X4

X3

Xe

Switch roles of xy and xg
"

-1 X2
= 7T *t 16
— 33 X2
= % 5
_ 3 3 _
= 2 8
_ 89 3%
= 7 t 3%t

3x1
30 X1
24— 2x
36 4x4
|
|
|
\4
48 11X
5 t 5
78 X
5 T 5
24 _ 20
5 5
132 - 16x4
5 5
PAREEE
11X
- 6
_ 5%
6
Xe
+)
_ X6
76

-2

X1

X2

X4

X2

X2

2Xo

+

+

X2

X2
5
X2
5
2Xo
5
X2

5

2X3
3x3
5x3
2X3

Switch roles of x3 and xs

+

X3
3
X3
6
8x3
3
X3
2

5

\J\ §witch roles of x, and x3

X
6
X5
6
2X5
3
X5
2

IIl. Linear Programming

Simplex Algorithm

33

The Pivot Step Formally PrCCO ndiBow > O.; o :“- O

PIVOT(N, B, A,b,c,v,1,e) CS'MF‘CX ensure § alc>0 f)

21

// Compute the coefficients of the equation for new basic variable x,.

let A be a new m x n matrix x :-__-b - R— . - _ .
b, = b/, L L-Qpa X~ Q"X "~ Qe

for each j € N — {e})(8‘: ..._L - qul qL), 1
Zie' :al'/ale a 0\ 1 - 'X - .. e
Gur = Vare e e Ace Tt qe e

[~// Compute the coefficients of the remaining constraints.
foreachlEB—{ll Xn = _ - - , -
by = by — ajeb, 3 |{)3 A24 Kd A3z X, .. G‘Se,*c
foreachj eNf{e} —(6 -q (
a; = a,j Aielyj 2‘ 3]', —-_ Q __a)
ail = _aieael 34 38 X"t
~// Compute the objective function. (a a, Qe
D = v+ c.h, 32 Q3L *--—-..._) . —
for cach j € N — {e} Q qLE/ 2 -
. ¢ = ‘/ — Cellej (—- 38. J . x
¢ = _Ceael L
—// Compute new sets of basic and nonbasic variables. le
N = N —{e}U{l}
B=B—{l}Ufe}

“return (/\AIE/TI;Zﬁ)

.-,,!,-, IIl. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

ge = bl/ale

for each j € N — {e} Rewrite “tight” equation
dej = aij/are for enterring variable xe.

Ziel = l/ale

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}

bi = b; —ajeb.

for each j € N —{e}

Ay = ajj — Qiele;

ail = _aieael
// Compute the objective function.
V=v+ CEZ;E
for each j € N — {e}

€ = ¢j —Celle;
6l = _Ceael
// Compute new sets of basic and nonbasic variables.
N =N—{e}u{l}
B=B—{l}U{e}
return (/\7, B, A, I;, c,7)

IIl. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 be = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 dej = aij/ase for enterring variable xe.
6 ﬁel = l/a;e

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l}

9 bi = bi —ajcbe Substituting Xe into

10 forcach j € N — e} other equations.

11 Aij = Ajj — Ajedej

12 ail = _aieael

13 // Compute the objective function.

14 vV=v+ CEZ;E

15 foreach j € N — {e}

16 Cj = ¢j — Collej

17 El = —Ceael

18 // Compute new sets of basic and nonbasic variables.
19 N=N-—{e}u{l}

20 B=B—{l}U{e}

21 return (/\A/E,cf}?z‘ﬁ)

IIl. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

let A be anew m x n matrix
be = bl/ale
for each j € N — {e}

o = 1/ay,

Rewrite “tight” equation
for enterring variable xe.

// Compute the coefficients of the remaining constraints.

2
3
4
5 ae/' = al/'/ale
6
7
8

for eachi € B —{/}
9 bi = bi —a;.b.

10 for each j € N — {e}
11 ZZ,-,- = a,-/- —a;eaej
12 aj] = —djele]

13 // Compute the objective function.
14 D =v+c.h,
15 foreach j € N — {e}

~
Substituting xe into

other equations.
J

~
Substituting xe into

16 G = cj—celle objective function.

17 61 = —Ce?l\el J
18 // Compute new sets of basic and nonbasic variables.

19 N=N-—{u{l}

20 B=B-{l}U{e}

21 return (/\A/,B\.X.i:,&\,ﬁ)

ggg Ill. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 b, = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 dej = aij/ase for enterring variable Xe.
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l} N

9 bi = bi —ajcbe Substituting xe into

10 forcach j € N — e} other equations.

11 Ll,/ = a,/ Ajelej J
12 ll = _azeael

13 // Compute the objective function.

14 v =v+ch, . i)
15 foreach j € N — {e} Substituting xe into

16 & = ¢j = Celley objective function.

17 E] = —C (lel J
18 // Compute new sets of basic and nonbasic variables. ~N

19 N=N-—{guil} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N, B,A,b,C,7) J/

@g IIl. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 Ee = bl/ale

4 forcach j € N — { Rewrite “tight” equation
5 dej = aij/ase g for enterring variable Xe.
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 forezjchieB—{i} N

9 bi = bi —ajcbe Substituting xe into

10 forcach j € N — e} other equations.

11 a,, = a,j Ajelej)
12 Il = _azeael

13 // Compute the objective function.

14 9 =v+ch, —)
15 foreach j € N — {e} Substituting xe into

16 ¢ = € = Cele objective function.

17 E] = —C (lel J
18 // Compute new sets of basic and nonbasic variables. ~N

19 N =N-—{eu{l} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N, B,A,b,C,7) J/

Eﬁ IIl. Linear Programming Simplex Algorithm 34

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

.-,,a,;, IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

—> just 5'4mm0Lrl3'\n¢. P"‘CVW—J—IN"W‘

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0 foreach j € N.
2. Xe = b//a/e.
———— R -
3. X; = b — aiebe for each i € B\ {e}.

.-,,!,-, IIl. Linear Programming Simplex Algorithm 35

(o

Effect of the Pivot Step

Lemma 29.1

basic solution after the call. Then

1. X; = O for eachj € N.

2. Xe = b//a/e.

3. X, = b — ajsbe for each i € B\ {e}.

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the

Proof:

.-,,!,-, IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.

\-,,!,-, IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

X =bi—> ax,

jeN

\-,,',-, IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — Z/E\UX,,
jeN
we have x; = b; foreach i € B.

J‘I% IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have X; = b; for each i € B. Hence Xe = bs = b/ aje.

J‘I% IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X; = O for eachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint
Xi = bi — Z/E\UX,,
jeN
we have X, = b; for each i € B. Hence Xe = b, = b/ ase.

3. After the substituting in the other constraints, we have

o

J‘I% IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

basic solution after the call. Then
1. X; = O for eachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.

2. When we set each non-basic variable to 0 in a constraint
Xi = bi — Z/E\UX,,
jen
we have X, = b; for each i € B. Hence Xe = b, = b/ ase.

3. After the substituting in the other constraints, we have

Xi = bj = bi — ajebe.

J‘I% IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

basic solution after the call. Then
1. X; = O for eachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.

2. When we set each non-basic variable to 0 in a constraint
Xi = bi — Z/E\UX,,
jen
we have X, = b; for each i € B. Hence Xe = b, = b/ ase.

3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe. O

J‘I% IIl. Linear Programming Simplex Algorithm

35

Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

ggg IIl. Linear Programming Simplex Algorithm 36

Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

= How do we choose the entering and leaving variables?
N\

[Example before was a particularly nice one!]

@g 1Il. Linear Programming Simplex Algorithm 36

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢)

2 let A be a new vector of length n

3 while some index j € N has c; > 0

4 choose an index e € N for which ¢, > 0
5 for each index i € B

6 ifa;, >0

7 A; = bi/ai.

8 else A; = o0

9 choose an index / € B that minimizes A;
10 if A; ==o00

11 return “unbounded”

12 else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
13 fori = 1ton

14 ifi € B

15 X,‘ = b,‘

16 else x;, =0

17 return (X, X5, ...,X,)

IIl. Linear Programming Simplex Algorithm

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

)
ra Black P;,ox Cfor now)

/(Returns a slack form with a
(N, B A.b.c.v) = feasible basic solution (if it exists)
let A be a new vector of length n
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton
ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

IIl. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b,) feasible basic solution (if it exists)

SIMPLEX (A, b, ¢) { Returns a slack form with a]

3 :while some index j € N has¢; > 0

1
41 choose an index e € N_for which ¢, > 0 i-—_ : y .
5| e e S > P‘?fe"‘*“’"”g many choices!
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1
13 fori =1ton ~~~~ "~~~ """ """ TTTTT
14 ifi € B
15 X,‘ = b,‘
16 else x;, =0
17 return (X, X5, ...,X,)

IIl. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

, while some index j € N has ;>0

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)

Returns a slack form with a
feasible basic solution (if it exists)

]

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

(Main Loop:

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

, while some index j € N has ;>0

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)

feasible basic solution (if it exists)

Returns a slack form with a]

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

/N

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

, while some index j € N has ;>0

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)

feasible basic solution (if it exists)

Returns a slack form with a]

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

.

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution.]

Ill. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢) { Returns a slack form with a]

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b,) feasible basic solution (if it exists)

3, while some index j € N has ¢; > 0

1
41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1

13 lfori =1lton

14 ifi e B N

s b - we will see

16 esed =0 Loder thot i+

17 return (X, X5, ...,X,) {-S o {:m L (
ptinma

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form\or_ which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a

solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

o

.-,,I-, IIl. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b,) feasible basic solution (if it exists)

SIMPLEX(A. b, ¢) { Returns a slack form with a]

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
' I
! 1
! 1

=]

choose an index / € B that minimizes A;
if Aj ==oc0
retnrn “nnbonnded”

Proof is based on the following three-part loop invariant:

Lemma 29.2 (’//

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

IIl. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

SIMPLEX(A. b, ¢) { Returns a slack form with a]

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢) feasible basic solution (if it exists)

2
3, while some index j € N has ¢; > 0
41 choose an index e € N for which ¢, > 0
5 1
6

for each index i € B
ifa;, >0
A; = bi/ai.

else A; = co :’j elementary row aptrd'-:on_\'

.ﬂhoose an index / € B that minimizes A; X (a s "n C‘w‘ ssian Elim e ﬁm)
if Aj==00 1
retnrn “nnbonnded” !

Proof is based on the following three-part loop invariant:
to the one returned by INITIALIZE-SIMPLEX,

1. the slack form is always\equivalent
2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 (’,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

ggg IIl. Linear Programming Simplex Algorithm 7

	Formulating Problems as Linear Programs
	Simplex Algorithm

