III. Linear Programming

Thomas Sauerwald

UNIVERSITY OF CAMBRIDGE

Easter 2015

Standard and Slack Forms

Formulating Problems as Linear Programs

Linear Programming (informal definition) -

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Linear Programming (informal definition) _____

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

Linear Programming (informal definition) ——

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising -----

Imagine you are a politician trying to win an election

Linear Programming (informal definition) -

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising -

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters

Linear Programming (informal definition) -

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising -

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising -

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

What is the best possible strategy?

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

 $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

Objective: Minimize $x_1 + x_2 + x_3 + x_4$

maximize subject to

 $X_1 + X_2$

 $x_1 + x_2 = z$ as far up as possible.

0

 $x_2 \ge 0$

*X*₁

 $x_1 + x_2 = z$ as far up as possible.

 $x_2 \ge 0$

*X*₁

Introduction

Introduction

Introduction

 $x_2 \ge 0$

 X_1

5 maximize *X*₁ **X**2 subject to $\begin{array}{cccc} - & x_2 & \leq \\ + & x_2 & \leq \\ - & 2x_2 & \geq \\ z_2 & & \geq \end{array}$ 8 $4x_1$ 10 $2x_1$ -2 $x_1 \ge 0$ 5*x*1 0 x_1, x_2

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

*X*₂

 $x_1 + x_2 = z$ as far up as possible.

Introduction

 $x_1 + x_2 = z$ as far up as possible.

 $x_1 + x_2 = z$ as far up as possible.

 $x_1 + x_2 = z$ as far up as possible.

0

 $x_2 \ge 0$

*X*₁

Formulating Problems as Linear Programs

9

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- There might be equality constraints.
- 4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

When switching from maximization to minimization, sign of objective value changes.

Reasons for a LP not being in standard form:

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> 2	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁			>	0

minimize	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	—	$2x_{2}$	\leq	4
	<i>x</i> ₁			\geq	0
		Neo	nate ol	biecti	ve function
		/	,	- ,	

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

maximize subiect to	2 <i>x</i> ₁	_	3 <i>x</i> ₂		
	<i>X</i> ₁	+	<i>X</i> 2	=	7
	<i>X</i> ₁	_	$2x_{2}$	\leq	4
	<i>x</i> ₁			\geq	0
	-				

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize subject to

3. There might be equality constraints.

maximize subject to

$$2x_{1} - 3x'_{2} + 3x''_{2}$$

$$\boxed{x_{1} + x'_{2} - x''_{2} = 7}{x_{1} - 2x'_{2} + 2x''_{2} \le 4}{x_{1}, x'_{2}, x''_{2} \ge 0}$$

$$\boxed{\text{Replace each equality}}{\text{by two inequalities.}}$$

3. There might be equality constraints.

maximize $2x_1$ $-3x_{2}^{\prime}$ $3x_{2}''$ +subject to $- x_2'' + 2x_2''$ $+ x'_2 \\ - 2x'_2$ $\begin{array}{rcl}
= & 7 \\
\leq & 4 \\
\geq & 0
\end{array}$ *X*1 *X*1 X_1, X_2', X_2'' Replace each equality by two inequalities. maximize $2x_1$ $3x_2'$ $3x_{2}''$ +subject to x2'' x2'' X1 7 7 X1 $2x_{2}''$ $2x_2$ +X1 x_1, x_2', x_2'' 0

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to

ze
$$2x_1 - 3x'_2 + 3x''_2$$

to $x_1 + x'_2 - x''_2 \leq 7$
 $x_1 + x'_2 - x''_2 \geq 7$
 $x_1 - 2x'_2 + 2x''_2 \leq 4$
 $x_1, x'_2, x''_2 \geq 0$

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize $2X_1$ $3x_2'$ $3x_{2}''$ _ subject to **X**1 7 *X*1 + \geq \geq \geq > $2x_2'$ *X*1 x_1, x_2', x_2'' ٥ Negate respective inequalities.

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize $2X_1$ $3x_2'$ $3x_{2}''$ subject to **X**1 7 +<u>></u> < > > *X*1 $2x_2'$ **X**1 x_1, x_2', x_2'' 0 Negate respective inequalities. maximize $2x_1$ $3x_2'$ $3x_{2}''$ +subject to $\frac{\frac{x_{2}^{\prime\prime}}{x_{2}^{\prime\prime}}}{2x_{2}^{\prime\prime}}$ X_1 x'2 + _ $-X_1$ < |> < |> *X*1 x_1, x_2', x_2''

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ii} x_i \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

s \ge 0.

maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ \downarrow Introduce slack variables

X 4	=	7	—	<i>X</i> 1	—	<i>X</i> ₂	+	<i>X</i> 3
X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3
<i>X</i> 6	=	4	_	<i>x</i> ₁	+	$2x_2$	_	$2x_3$

maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \leq 7$ $-x_1 - x_2 + x_3 \leq -7$ $x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$ \downarrow Introduce slack variables

subject to

maximize $2x_1$ $3x_2$ $3x_3$ +subject to x_1, x_2, x_3 Introduce slack variables ↓ maximize $2x_1$ $- 3x_2 +$ $3x_3$ subject to > $X_1, X_2, X_3, X_4, X_5, X_6$ 0

maximize subject to					2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃
	<i>X</i> 4	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3
	X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3
	<i>X</i> 6	=	4	_	<i>x</i> ₁	+	$2x_2$	_	$2x_3$
		x_1, x_2	, x ₃ , x ₄	, x ₅ , 2	x 6	\geq	0		

maximize subject to					2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃		
-	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> 2	+	<i>X</i> 3		
	X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> 2	_	<i>x</i> 3		
	<i>x</i> ₆	=	4	_	<i>X</i> 1	+	$2x_{2}$	_	2 <i>x</i> ₃		
		<i>x</i> ₁ , <i>x</i> ₂	, x ₃ , x ₄	, x ₅ , x	6	\geq	0				
	Use variable <i>z</i> to denote objective function and omit the nonnegativity constraints.										

maximize subject to					2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃	
	<i>X</i> 4	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> 3	
	<i>x</i> ₆	=	4	_	<i>x</i> ₁	+	2 <i>x</i> ₂	_	$2x_{3}$	
		x_1, x_2	, x ₃ , x ₄	1, X 5,	<i>X</i> 6	\geq	0			
			¦U ¦ar	se va nd on	ariable nit the	z to (nonn	denote legativ	e obje ity co	ective f onstrair	unction nts.
	Ζ	=			2 <i>x</i> ₁	_	3 <i>x</i> 2	+	3 <i>x</i> ₃]
	<i>X</i> 4	=	7	—	<i>X</i> 1	_	<i>X</i> 2	+	<i>X</i> 3	
	X 5	=	-7	+	<i>x</i> ₁	+	<i>x</i> ₂	—	<i>X</i> 3	
	<i>X</i> 6	=	4	_	<i>X</i> 1	+	$2x_{2}$	_	$2x_{3}$	

maximize subject to					2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃	
-	X 4	=	7	_	<i>X</i> 1	_	<i>x</i> ₂	+	<i>X</i> 3	
	X 5	=	-7	+	<i>X</i> 1	+	<i>x</i> ₂	_	<i>X</i> 3	
	<i>x</i> ₆	=	4	_	<i>X</i> 1	+	$2x_2$	_	$2x_3$	
		x_1, x_2	, x ₃ , x	4, X 5, 2	x 6	\geq	0			
$(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6})$		Use variable <i>z</i> to denote objecti and omit the nonnegativity cons								unction nts.
=(0,0,0,7,-7,4)	Ζ	=			$2x_{1}$	_	3 <i>x</i> 2	+	3 <i>x</i> 3	
	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> 2	+	<i>X</i> 3	·)
hall be set a	X 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	
not teasible!	<i>x</i> ₆	=	4	-	<i>x</i> ₁	+	2 <i>x</i> ₂	_	2 <i>x</i> ₃	
This is called slack form.										

Slack Form (Formal Definition) -

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$\begin{aligned} z &= \underbrace{v} + \sum_{j \in N} c_j x_j \\ x_i &= \underbrace{b_i} - \sum_{j \in N} a_{ij} x_j \qquad \text{for } i \in B, \end{aligned}$$

and all variables are non-negative.

Slack Form (Formal Definition) -

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} & z = v + \sum_{j \in N} c_j x_j \ & x_i = b_i - \sum_{j \in N} a_{ij} x_j & ext{ for } i \in B, \end{aligned}$$

and all variables are non-negative.

Variables on the right hand side are indexed by the entries of *N*.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

 $(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}) = (8, 4, 0, 18, 0, 0)$ is a feasible solution with objective value 28

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

~

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

• $B = \{1, 2, 4\}, N = \{3, 5, 6\}$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 + \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
- Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \ c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$v = 28$$

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

 $\begin{array}{c} x = \lambda \cdot y + (\Lambda - \lambda) \cdot z \\ \lambda \in (0, 1) \end{array}$

Proof:

Let x be an optimal solution which is not a vertex

• Let x be an optimal solution which is not a vertex $\Rightarrow \exists$ vector d so that x - d and x + d are feasible

• Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x - d and x + d are feasible

х

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists *j* with $d_j < 0$

Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero

х

Standard and Slack Forms

 $= \underbrace{x + \lambda'd}_{x + \lambda'd} \underbrace{\text{feasible}}_{x + \lambda'd > 0} \text{ since } A(x + \lambda'd) = Ax = b \text{ and } A(x + \lambda'd$

III. Linear Programming

 X_1

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all *j*, *d_j* ≥ 0

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$

