Il. Matrix Multiplication

Thomas Sauerwald

Easter 2015

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction

Il. Matrix Multiplication Introduction

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - Bis defined by

n
ci=> ax-by Vij=12...n
k=1

1
Il. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - Bis defined by

n
ci=> ax-by Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)
1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

1
Il. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - Bis defined by

n
c=> ax-bg Vij=12...n
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)
1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

-,.i,_ II. Matrix Multiplication Introduction 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - Bis defined by

n
ci=> ax-by Vij=12...n
k=1

\

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n- n? = n®

1 n= A rows arithmetic operations are necessary.

2 let C be anew n X n matrix
3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n?).

1
Il. Matrix Multiplication Introduction 3

Outline

Serial Matrix Multiplication

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

5
* II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Biz Ci1
<A21 Azz) ’ (Bm 522> ’ (Cm

C1 2
CZZ

).

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Biz Ci1
<A21 Azz) ’ (Bm 522> ’ (Cm

Hence the equation C = A - B becomes:

C12)
C)

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Biz Ci1 Ci2
<A21 Azz) ’ (Bm 522> ’ (Cm sz)
Hence the equation C = A - B becomes:

Ci1 Ci2\ _ (A Aw) (B B
Co1 C2 Az A Bxy Bao

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

Al A Bi1 Biz Ci
A - B =) C =
<A21 Azz) ’ (Bm Bzz) (Cm
Hence the equation C = A - B becomes:
Ci1 Ciz _ Ay Az) Bi1 Bi2
Car Ca2 Aot Az Bt Bz
This corresponds to the four equations:
Ci1 = A1t - Byt + A2 - By
Ci2 = A1 - Biz + A2 - Bz

Co1 = Azt - Bi1 + Az - Bay
Co2 = Aot - Bia + Az - Boo

Ci2
Co

).

2 II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Ap2 Bi1 Biz Ci1 Ci2
<A21 Azz) ’ (Bm Bzz) ’ (Cm sz)
Hence the equation C = A - B becomes:
Ci1 Ciz _ Ay Az . Bi1 Bi2
Cor Ca Ay Az Boy Ba
This corresponds to the four equations:

Cin = At Bit + Az Bas Each equation specifies
Ciz = Ai1 - Biz + Az B2 two multiplications of
Co1 = Aot - Bii + A - By] N/2%xn/2 matrices and the
Cop = At - Bio + Ass - Boo addition of their products.

a'D 1. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1t - Bi1 + Asz - By
Ci2 = A11 - Bia + A1z - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Bia + Az - Boz

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an by
else partition 4, B, and C as in equations (4.9)
Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

AN B W

Ci1 = A1t - Bi1 + Asz - By
Ci2 = A11 - Bia + A1z - B
Co1 = Azt - Bi1 + Az - Boy
Ci1 = A2t - Bia + Az - Boz

g 1. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

Line 5: Handle submatrices implicitly through

2 let C be anew n X n matrix X 3 N i
3 ifn == index calculations instead of creating them.
4 ¢ = an by
5 else partition A, B, and C as in equations (4.9) Z
6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Ci1 = A1t - Bi1 + Asz - By
Ci2 = A11 - Bia + A1z - B
Cot = Azt - Bi1 + Az - By
Ci1 = A2t - Bia + Az - Boz

ol
* Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an by
else partition 4, B, and C as in equations (4.9)
Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

AN B W

Let T(n) be the runtime of this procedure.

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n= A.rows
let C be a new n X n matrix
ifn==1
¢ = an by
else partition 4, B, and C as in equations (4.9)
Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

AN B W

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T(n) =
(n) ifn>1.

8 Multiplications

ol
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,
8- T(n/2) ifn>1.

8 Multiplications

T(n) =

ol
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an by
5 else partition A, B, and C as in equations (4.9)
6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o
)

o(1) ifn=1,

"M =1\s.7(n2) itn>1.

/1 N
[8 Multiplications] (4 Additions and Partitioningj

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an by
5 else partition A, B, and C as in equations (4.9)
6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o
)

o(1) ifn=1,

T =18 . T(n/2) + 0(r?) ifn>1.

A
[8 Multiplications] (4 Additions and Partitioningj

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r?) i n>1.

Solution: T(n) =

)
g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r?) i n>1.

Solution: T(n) = ©(8"°%")

)
g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an by
5 else partition A, B, and C as in equations (4.9)
6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r?) i n>1.

Solution: T(n) = ©(8°%") = ©(n?) {No improvement over the naive algorithm!]

ol
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix

3 ifn==

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 . T(n/2) + 0(r?) i n>1.

Solution: T(n) = ©(8%%2") = ©(n®)

)
g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n x n matrix
3 ifn==
4 ¢ = an by
5 else partition A, B, and C as in equations (4.9)
6 Cy1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A41,, By;)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

Solution: T(n) = ©(8°%") = G)(rB) [Goal: Reduce the number of multiplicationsj

ol
Il. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

g II. Matrix Multiplication Serial Matrix Multiplication 7

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969)

1. Partition each of the matrices into four n/2 x n/2 submatri

2. Create 10 matrices S1, S, ..., Si9. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Il. Matrix Multiplication Serial Matrix Multiplication 7

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices
2. Create 10 matrices S1, S, ..., S19. Each is n/2 x n/2 and is the sum

or difference of two matrices created in the previous step.
@ Recursively compute 7 matrix products Py, Ps, ..., Pz, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting

various combinations of the P;.
. N J

[Time for steps 1,2,4: ©(n?), hence T(n) =7 - T(n/2) + ()T (n) = @(nlog7)l

o 1. Matrix Multiplication Serial Matrix Multiplication 7

Solving the Recursion

" @TZ_Z +C7-n(mq Fe ()P)+ c. ne .
=7, T("/‘a)-f‘?c (") 54c -n
=722 (3 Tchfgnccw)l)wc(/)fch

= 75 T Chig) 3¢ (gt de (o) g

——7~‘°~9¢“ Tm)+?2 24 ()"
— ?(0:"‘”0(’?)+3”’”(9— 2
...-. 2h @(4)7‘6(:} fgm

7
— jr("ﬂz"\

(n L)
O(A) +O(F 1) = Qf(10:127 e
=2 It

erial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 = S+ Bop = (A11 + At2) - B
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sg - S10 = (A11 — A21) - (By1 + Bi2)

Il. Matrix Multiplication Serial Matrix Multiplication

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

Claim
A11Bi1 + A12Bar A11Bio + A12By) _)(Ps+ Py — P> + Py Py + P>
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

ol
Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — P> + Pg =

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = A1 - S = Ay1 - (Bi2 — Bo2)
P2 = Sy - Bop = (A1 + A2) - B2
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:

Ps + Py — P2 + Pg :M1 + A11Bop + A Biq - A22522\+D‘\22521 - A22511J
— A11Bo2 — A12B27 HA12321 + A12Bop — A2 Bot — Ao Boo

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Ps = A1 B1y + AvrBsz + AeoBi1 + AeeBss + ApeBai — AoaBTT
— AtBa2 — A28 + A12Bo1 + AreBas — ApeBot — ApeBe

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 =Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps P+ P
A21Bi1 + A22Bat A21Bi2 + AaBoo Pz + Py Ps+ Py — P3 — P

Proof:
Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsz + A12Boy + AweBsz — AeeBai — BB
_ -
= A11Bi1 + Ai2By 2 C/fd

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = S7 - Sg = (A2 — Az2) - (B2t + B2)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

- Claim
A11Bi1 + A12Bor A11Bio + A12By _ (Ps+ Py — P+ Ps Py + P
A21Bi1 + A22Bat A21Bi2 + AaBoo P3 + P4 Ps+ Py — P3 — P
N d:
[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24

Il. Matrix Multiplication Serial Matrix Multiplication 9

Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- Sy = A1y - (B2 — Bzo)
P2 =83 - Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Pg = S7- Sg = (A2 — Azz) - (B2t + B22) q::ff[“—/)‘fo 4}
P7—39 310—(A11—A21) (B11 + Bi2) ‘)

—

- Claim

A11Bi1 + A2Bor A11Bi2 +
A21Bi1 + AoB2t A1 Bi2 + A22522

Ps + P4 —Pg—P7

[Other three blocks can be verified similarly.]
Proof:

Ps + Py — Po + Pg = A11By1 + ArBzz + AeeBiT + AeaBas + AeaBat — AeeBiT
— AuBrz — AwaBsa + A12B21 + AweBsz — AeeBai — AeaBrs
= A11B11 + A12B24 |

Il. Matrix Multiplication Serial Matrix Multiplication 9

Current State-of-the-Art

Conjecture: Does a quadratic-time algorithm exist?

g ey Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Conjecture: Does a quadratic-time algorithm exist?

Asymptotic Complexities:
= O(n®), naive approach

¥

g ey Il. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Conjecture: Does a quadratic-time algorithm exist?

Asymptotic Complexities:
= O(n®), naive approach
= O(n?%%), Strassen (1969)

¥

g II. Matrix Multiplication Serial Matrix Multiplication

Current State-of-the-Art

Conjecture: Does a quadratic-time algorithm exist?

Asymptotic Complexities:

= O(n®), naive approach

= O(n?%%), Strassen (1969)

= O(n*7%), Pan (1978)

= O(n?%22), Schénhage (1981)
= O(n?%'), Romani (1982)
(
(
(

o}

= O(n?*%%), Coppersmith and Winograd (1982)
= O(n**7?), Strassen (1986)

= O(n*2%), Coppersmith and Winograd (1989)

Il. Matrix Multiplication Serial Matrix Multiplication 10

Current State-of-the-Art

Conjecture: Does a quadratic-time algorithm exist?

Asymptotic Complexities:
= O(n®), naive approach
= O(n?%%), Strassen (1969)
= O(n?7%), Pan (1978)
= O(n?%22), Schénhage (1981)
= O(n?%'), Romani (1982)
(n?4%8), Coppersmith and Winograd (1982)
(n?47%), Strassen (1986)
(n*378), Coppersmith and Winograd (1989)
= O(n?*%"*), Stothers (2010)
= O(n?%788%2) V. Williams (2011)
= O(nA3728839) | e Gall (2014)

S 00O

Il. Matrix Multiplication Serial Matrix Multiplication 10

Outline

Reminder: Multithreading

i
o II. Matrix Multiplication

Reminder: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

II. Matrix Multiplication Reminder: Multithreading

Memory Models

Distributed Memory
= Each processor has its private memory
= Access to memory of another processor via messages

O O O O
DD e DD (D)

e
II. Matrix Multiplication Reminder: Multithreading 12

Memory Models

Distributed Memory
= Each processor has its private memory

= Access to memory of another processor via messages

[[R [

/A /N
O—(—)—®)

Shared Memory

= Central location of memory
= Each processor has direct access

g II. Matrix Multiplication Reminder: Multithreading

Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

[[R [[

(DD —()y—(D)—(5)—(z
N4 N N N

Shared Memory

= Central location of memory
= Each processor has direct access

Shared Memory

T d bee

.-,, Ty II. Matrix Multiplication Reminder: Multithreading 12

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

i
II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

i
II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult

= Use concurrency platform which coordinates all resources

AN
[Scheduling jobs, communication protocols, load balancing etc.]

S
* I1. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:

i
II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

i
II. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync

i
ﬁf I1. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync
= wait until all spawned threads are done
* parallel

S
* I1. Matrix Multiplication Reminder: Multithreading 13

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn

= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread

* sync
= wait until all spawned threads are done

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

S
* I1. Matrix Multiplication Reminder: Multithreading

Dynamic Multithreading

= Programming shared-memory parallel computer difficult
= Use concurrency platform which coordinates all resources

Functionalities:
* spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
* sync
= wait until all spawned threads are done
* parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

AN

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

) II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

FIB(n)
if n<=1 return n
else x=FIB(n-1)
y=FIB (n-2)
return x+y

5 K
i B W N B O

II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers Recursively (Fig. 27.1)

FIB(n)
if n<=1 return n
else x=FIB(n-1)
y=FIB (n-2)
return x+y

£ Fdl
&K > W N KO

II. Matrix Multiplication Reminder: Multithreading 14

Computing Fibonacci Numbers Recursively (Fig. 27.1)

Very inefficient — exponential time!

FIB(n)
if n<=1 return n
else x=FIB(n-1)
y=FIB (n-2)
return x+y

s W N P o

e 5 II. Matrix Multiplication Reminder: Multithreading 14

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(n)
if n<=1 return n
X=spawn P—FIB(B:l)
=P-FIB (n-2)

o s W N KE o

return x+y

i
ﬁf I1. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

e Without spawn and sync same pseudocode as before
e spawn does not imply parallel execution (depends on scheduler)

e

0: P-FIB(n)

if n<=1 return n

else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

o oBs W NP

Sl II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

e

0: P-FIB(n)

ilg if n<=1 return n

2: else x=spawn P-FIB(n-1)
3: y=P-FIB (n-2)

4: sync

5: return x+y

o

) II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

e V set of threads (instructions/strands without parallel control)

0:

o oBs W NP

e
P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)

e V set of threads (instructions/strands without parallel control)
e E set of dependencies

0:

o oBs W NP

e
P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

z

0: P-FIB(n)

if n<=1 return n

else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N

S
ﬂf I1. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

return x+y

>
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB(4)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

o O

P-FIB(2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
ﬁf I1. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Q
P-FIB(4)
P-FIB(3)

-0 O

P-FIB(2)

P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

S
ﬂf I1. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

o O

P-FIB(2)

-0 O

P-FIB(2)

P-FIB(1)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

i
II. Matrix Multiplication Reminder: Multithreading

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

|~

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

e 5 II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

"

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

e 5 II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

"

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

e 5 II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

"

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

ol
II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

e 5 II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

ol
II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

ol
II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

..

P-FIB (n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

s W N P o

ol
II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

e 5 II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (Fig. 27.2)

0: P-FIB(n)

1 if n<=1 return n

2: else x=spawn P-FIB(n-1)
3 y=P-FIB (n-2)

4 sync

ol
II. Matrix Multiplication Reminder: Multithreading 15

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

[SONEO

o

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

w

II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

B II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

1]
L]]
II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

]]
[]]
II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

]
[]]
II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

]
[]]
II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

\o\y i
is\./?s

e
o,
&
\

II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

0O
”\./2
\‘/ -

.
o/ |
\./ -

II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

Q-

N

- _ L~
ML

II. Matrix Multiplication Reminder: Multithreading 16

Computing Fibonacci Numbers in Parallel (DAG Perspective)

.—> 4 4
\. _—

- _ L~
g ¥’

II. Matrix Multiplication Reminder: Multithreading 16

Performance Measures

Work

Total time to execute everything on single processor.

Bl II. Matrix Multiplication Reminder: Multithreading 17

Performance Measures

Work

Total time to execute everything on single processor.

e 5 II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

e 5 II. Matrix Multiplication Reminder: Multithreading 17

Performance Measures

Work

Total time to execute everything on single processor.

Span

Longest time to execute the threads along any path.

g II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span

Longest time to execute the threads along any path.

g II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span
Longest time to execute the threads along any path.

e 5 II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span

Longest time to execute the threads along any path.

g II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span
Longest time to execute the threads along any path.
N
AN

If each thread takes unit time, span is
the length of the critical path.

—Q
00—

e 5 II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span
Longest time to execute the threads along any path.
N
AN

If each thread takes unit time, span is
the length of the critical path.

—Q
0=

e 5 II. Matrix Multiplication Reminder: Multithreading

Performance Measures

Work

Total time to execute everything on single processor.

Span
Longest time to execute the threads along any path.
N
AN

If each thread takes unit time, span is
the length of the critical path.

#nodes = 5

T

e 5 II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

e
e 5 II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= T = work, T = span

i
ol II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

i
II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!)

) II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

b e
* I1. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
7—1]
| Tp > —
~ P

(Time on P processors can’'t be shorter than if all work all timej

) II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law
7—1]
| Tp > —
~ P

(Time on P processors can’'t be shorter than if all work all timej

) II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors T, = =

8,P=2
Work Law O
B e | o0olo
(Time on P processors can’'t be shorter than if all work all timej
O O
O
O

Sl II. Matrix Multiplication Reminder: Multithreading 18

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

Work Law

7—1]
Tp > —
~ P

(Time on P processors can’'t be shorter than if all work all timej

) II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span

= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

——— Span Law

i
oy II. Matrix Multiplication

Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Too =5
—— Work Law \
T4
Tp > —
F=P
——— Span Law N\
Tp > Too
S

(Time on P processors can’'t be shorter than time on co processors]

II. Matrix Multiplication Reminder: Multithreading 18

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

——— Span Law

= Speed-Up: Ll

Tp

Too =5

i
ﬁf I1. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors Too =5
—— Work Law \
T4
Tp > —
F=P
——— Span Law N\
Tp > Too

= Speed-Up: I {Maximum Speed-Up bounded by P!]

Tp

Sl II. Matrix Multiplication Reminder: Multithreading 18

Work Law and Span Law

= T = work, T = span
= P = number of (identical) processors
= Tp = running time on P processors

~— Work Law

——— Span Law

= Speed-Up: %

= Parallelism: TT—‘

Too =5

i
E:E II. Matrix Multiplication Reminder: Multithreading

Work Law and Span Law

= T = work, T = span

= P = number of (identical) processors

= Tp = running time on P processors
~— Work Law
Ty
Tp > —
F=P
——— Span Law
TP Z Too
. T
= Speed-Up: 7
» Parallelism: =
" T Maximum Speed-Up for co processors! J

Too =5

ey II. Matrix Multiplication

Reminder: Multithreading

Outline

Multithreaded Matrix Multiplication

Il. Matrix Multiplication

Multithreaded Matrix Multiplication

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E aj X fori=1,2,...,n
J=1

MAT-VEC(A4, x)

1 n = A.rows

2 let y be a new vector of length n
3 parallelfori = 1ton

4 Vi = 0

5 parallel fori = 1ton

6 for j = 1ton

7 Yi = yi +aijx;

8 return y

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E aj X fori=1,2,...,n
J=1

MAT-VEC(A4, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1top

g e The parallel for-loops can be used since

6 different entries of y can be computed concurrently.
7

8 return y

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,-:E aj X fori=1,2,...,n
J=1

MAT-VEC(A4, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallelfori = 1ton

g al‘a)l}]ielzfo(l)'i - lton The parallel for-loops can be used since
paraze Jon = different entries of y can be computed concurrently.

6 for j = 1ton

7 Yi = Yit+aix;

8 return y

How can a compiler implement the parallel for-loop?

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 20

Implementing parallel for based on ivide-and-Conquej

MAT-VEC-MAIN-LOOP (A, x, y,n,i,i’)
N —_

ifi ==i’

for j = 1ton

Yi = yi +aijx;

elsemid = (i +i"/2]]

spawn MAT-VEC-MAIN-LOOP(A, x, y,n i, mid)

AT-VEC-MAIN-LOOP (4, x, y,n,mid + 1,i')
sync

N AW —

Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 ifi==i
2 for j = 1ton
3 Yi = yi +ai;x;

4 elsemid = [(i +1i')/2]

spawn MAT-VEC-MAIN-LOOP (A4, x, y, n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i')
sync

<o wn

?:? 1. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 n = A.rows
1 ifi==1i 2 let y be a new vector of length n
2 for j = 1ton 3 parallel fori = Iton
—_—
3 Vi = yit+aix; 4 yi =0
4 elsemid = [(i +1i')/2] 5 parallel fori = lton
5 spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid) 6] = lton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 yi = yi+aix;
7 sync 8 returny
B

,,n = II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i.i’)

1 n = A.rows

1 ifi==1i 2 let y be a new vector of length n
2 for j = 1ton 3 parallel fori = Iton
3 Vi = yit+aix; 4 yi=0
4 elsemid = [(i +1i')/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (A, x, y,n, i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 yi = yi+aix;
7 sync 8 returny

Ti(n) =

e

,,a = II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n= A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 Vi = Vi + ayx; 4 yi =0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
6 AT-VEC-MAIN-LOOP (A, x, y,n,mid + 1,i’) 7 i = yi+ajx;
7 sync 8 return y
Ti(n) Work is equal to running time of its serialization; overhead
1 =

of recursive spawning does not change asymptotics.

i
II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 yi = yi+aix; 4 yi=0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

Work is equal to running time of its serialization; overhead
— of recursive spawning does not change asymptotics.

i
II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

@@@b

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 ifi==i' 2 let y be a new vector of length n
2 forj =lton 3 parallel fori = 1ton
3 yi = yi+aix; 4 yi=0
4 else mid = LG +i"/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

i
II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP (4, x, y,n,i,i’") n = A.rows

1

ifi ==i' 2 let y be a new vector of length n

for j = 1ton 3 parallel fori = 1ton
Yi = yi +aix; 4 yi=0

else mid = | (i +1')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP(A, x, y,n, i, mid) 6 for j = 1ton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
sync 8 returny

N AW —

Work is equal to running time of its serialization; overhead
of recursive spawning does not change asymptotics.

Too(n) = Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

Eig II. Matrix Multiplication Multithreaded Matrix Multiplication 21

Implementing parallel for based on Divide-and-Conquer

D) = w@
O

MAT-VEC(4, x)

MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’) 1 n= Arows

Lfifi==i" 2 let y be a new vector of length n
2 for j = 1ton 3 parallel fori = 1ton

3 4 yi=0

4 5 parallel fori = 1 ton

5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton

6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 i = yi+ajx;

7 sync 8 return y

5 Work is equal to running time of its serialization; overhead
Ti(n) = ©(n") : : .
of recursive spawning does not change asymptotics.

the maximum span of any of the n iterations.

i
II. Matrix Multiplication Multithreaded Matrix Multiplication 21

max iter(n){ Span is the depth of recursive callings plus]
1<i<n

Implementing parallel for based on Divide-and-Conquer

MAT-VEC(4, x)
MAT-VEC-MAIN-LOOP(A, x, y,n,i,i’)

1 n = A.rows
1 2 let y be a new vector of length n
2 for j = 1ton 3 parallel fori = 1ton
3 Y= Vi +di;) 4 yi=0
4 elsemid = [(i +1i')/2] 5 parallel fori = I ton
5 spawn MAT-VEC-MAIN-LOOP (4, x, y,n,i, mid) 6 for j = 1ton
6 MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 Vi = yi +a;x;
7 sync 8 return y

5 Work is equal to running time of its serialization; overhead
Ti(n) = ©(n%) . . ’
of recursive spawning does not change asymptotics.

Too(n) = ©(log n) + max |ter(n) e Span is the depth of recursive callings plus
the maximum span of any of the n iterations.

=10(n).

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 21

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)
1 n = A.rows

2 let C be anew n x n matrix

3 parallel fori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 Cij = Cij +(l,'k-bkj
8 return C

Il. Matrix Multiplication Multithreaded Matrix Multiplication

22

Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows
2 let C be anew n x n matrix
3 parallelfori = 1ton
4 parallel for j = 1 ton
5 C,’j =0
r—-
6 ,—ﬁ}_r_k =1ton
7 Cij = Cij T+ aik -bkj
8

return C

P-SQUARE-MATRIX-MULTIPLY(A, B) has work T;(n) = ©(n°®) and span T..(n) = ©(n).

[The first two nested for-loops parallelise perfectly.]

1
E;E II. Matrix Multiplication Multithreaded Matrix Multiplication 22

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

n = A.rows

1

T
3 cn = anbn

4

5

else let 7 be a new n x n matgix

partition A, B, C, and|T[into n/2 x n/2 submatrices

Aty Arz, Azr, Asas B, Bia, Bay, Baai Chi, Cra, Cop, Cags

and Ty, Tha, a1, Taa; respectively 'P__r M
6 spawr. P-MATRIX-MULTIPLY-RECURSIVEYC11, 411, Bi1) Q/F nin .
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, Ay, Bj2) ? },L
nawn, -
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,y, A1, Byy) "” N P-l"\' n
9 spawn P-MATRIX-MULTIPLY-RECURSIVE ({C2,, A1, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE(T;;, Ay, Bs;)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE |T},, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSINENT S, Az, Byy)
13 P-MATRIX-MULTIPLY-RECURSIVE[T5,, A25, By,)
14 sync
15 parallel fori = 1ton .
16 parallel for j = 1ton },DIV \dQ - COP‘? Wev
17 Cij = Cij + b

Il. Matrix Multiplication Multithreaded Matrix Multiplication 23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

I n = A.rows

2 ifn==

3 ci1 = anby

4 else let T be anew n x n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices
A1, Az, Az1, A2z Bii, Bia, Bary Baas Cri, Crz, Cop, Cans
and Ty, T2, Ty, T, ; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, Ay, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, A3y, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7},, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX-MULTIPLY-RECURSIVE (T%,, A23, By,)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 € = i+l [The same as before.]
v

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = nd span To(n) =

Il. Matrix Multiplication Multithreaded Matrix Multiplication 23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

=A.rows

1
2 |ifn == —
3 Lc”_: aybiy }TMC/,) - 9(4)
4 elsellet 7 be a new n x n matri
5 artition A, B, C,and 7 into n/2 x n/2 submatrices
Ayy, Aja, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo O(4)
and Ty, T2, T, T5,; respectively
6 spawn ATRIX-MULTIPLY-KECURSIVE(Cy1, A11, B11)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, Ay, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, A3y, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7},, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 P-MATRIX- PLY-RECURSIVE (755, A»p. Boy)
14 yne
15 parallel fori = 1ton O ()
16 parallel for j = 1ton - n
17 Cij = ¢ij + b

[The same as before.]

1 £

g mu b ial ‘ CO»'HW £
tn Pam"-g,]

74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n)

(o)

- 1. Matrix Multiplication Multithreaded Matrix Multiplication

23

The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

I n = A.rows

2 ifn==
3 ci1 = anby
4 else let T be anew n x n matrix
5 partition A, B, C,and 7 into n/2 x n/2 submatrices
Ayy, Aja, Ay Asss By, Bra, Bay, By Cry, Cra, Cop, oo
and Ty, T2, Ty, T, ; respectively
6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, Ay, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, Ay, Byy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy,, A3y, Bi2)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Ba1)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7},, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2, Bsy)
13 _ P-MATRIX-MULTIPLY-RECURSIVE (752, A22. B2s)
14 sync
15 parallel fori = 1ton
16 parallel for j = 1ton
17 €y = ¢+l [The same as before.]
74

P-MATRIX-MULTIPLY-RECURSIVE has work Ty(n) = ©(n®) and span T..(n) = ©(log? n).

(7(m = Twtn/2) + ©(log)|

Il. Matrix Multiplication Multithreaded Matrix Multiplication 23

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.}

or difference of two matrices created in the previous step.

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication

24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised)

1.

SN

Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

. Create 10 matrices S, S, ..., Sio. Each is n/2 x n/2 and is the sum

or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

. Recursively compute 7 matrix products Py, Ps, ..., P;,each n/2 x n/2

[Recursively spawn the computation of the seven products.]

. Compute n/2 x n/2 submatrices of C by adding and subtracting

various combinations of the P;.

[Using doubly nested parallel for }

this takes ©(n?) work and ©(log n) span.

&

Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Strassen’s Algorithm in Parallel

~—— Strassen’s Algorithm (parallelised) N\
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for Ti(n) = ©(n'97)
this takes ©(n?) work and ©(log n) span.

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Tl 'T (\"\)
Strassen’s Algorithm in Parallel !}Ia:m 663 ‘@)(h)q
Single W G3) Ollog)
~—— Strassen’s Algorithm (parallelised) a’;
h 00 n)

1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index calculations.]

or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

[Recursively spawn the computation of the seven products.]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

2. Create 10 matrices S1, S, ..., S10. Each is n/2 x n/2 and is the sum

3. Recursively compute 7 matrix products Py, Ps, ..., P;, each n/2 x n/2

this takes ©(n?) work and ©(log n) span.

Using doubly nested parallel for Ti(n) = ©(n'°97)
T..(n) = ©(log® n)

J

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 24

Matrix Multiplication and Matrix Inversion

]Speedups|for Matrix Inversion by an equivalence with Matrix Multiplication.

;.nv,_ II. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = anﬂ and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(I(n)).

\

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:

2
E:E II. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

lh A O
D=0 I, B
0 0 I

2
Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

h A 0 h —A |AB]
bD=(0 I B = D'=|0 b —).

0 0 I

2
Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(0o 1 -BJ.
O 0 /n O 0 /n

2
Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(0o 1 -BJ.
O 0 /n O 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,

2
Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(0o 1 -BJ.
0 0 /n O 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,
= and we can invert D in O(/(3n)) = O(I(n)) time.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\

Proof:
= Define a 3n x 3n matrix D by:

L A 0 L —-A AB
D=|0 I, B = p"=(0o 1 -BJ.
0 0 /n 0 0 /n

= Matrix D can be constructed in ©(n?) = O(I(n)) time,
= and we can invert D in O(/(3n)) = O(I(n)) time.

Il. Matrix Multiplication Multithreaded Matrix Multiplication 25

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)
—

If we can invert an n x n matrix in time /(n), where /(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c- M(n) for some constant ¢ < 1/2. Then we can
compute the inverse of any real nonsingular nx n matrix in time O(M(n)).

i
Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where /(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c¢- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]
_—

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where /(n) = Q(n?) and /(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

[Allows us to use Strassen’s Algorithm to invert a matrix!]

~NJ
Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c¢- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/)

L

[Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.]

Eig Il. Matrix Multiplication Multithreaded Matrix Multiplication 26

	Introduction
	Serial Matrix Multiplication
	Reminder: Multithreading
	Multithreaded Matrix Multiplication

