Outline

Introduction to Sorting Networks

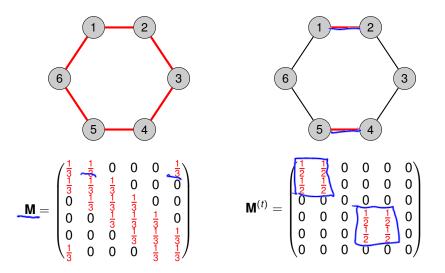
Batcher's Sorting Network

Counting Networks

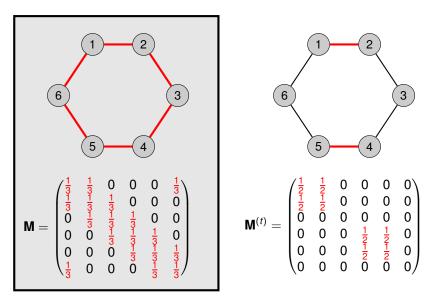
Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication



Communication Models: Diffusion vs. Matching

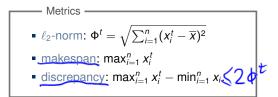


Smoothness of the Load Distribution

- let $x \in \mathbb{R}^n$ be a load vector
- \overline{x} denotes the average load

- let $x^t \in \mathbb{R}^n$ be a load vector at round t
- x denotes the average load

- let $x^t \in \mathbb{R}^n$ be a load vector at round t
- x denotes the average load



Smoothness of the Load Distribution

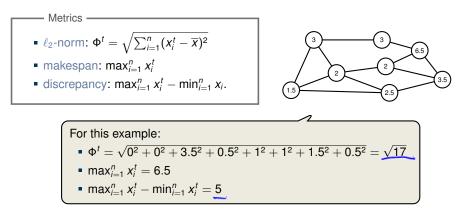
- let $x^t \in \mathbb{R}^n$ be a load vector at round t
- x denotes the average load

- Metrics ------

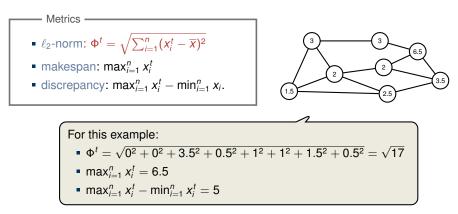
•
$$\ell_2$$
-norm: $\Phi^t = \sqrt{\sum_{i=1}^n (x_i^t - \overline{x})^2}$

- makespan: $\max_{i=1}^{n} x_i^t$
- discrepancy: $\max_{i=1}^{n} x_{i}^{t} \min_{i=1}^{n} x_{i}$.

- let $x^t \in \mathbb{R}^n$ be a load vector at round t
- x
 denotes the average load



- let $x^t \in \mathbb{R}^n$ be a load vector at round t
- x denotes the average load



Diffusion Matrix -

Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix *M* is defined as follows:

$$M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E, \\ 1 - \alpha \deg(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Diffusion Matrix

How to choose α for a *d*-regular graph? • $\alpha = \frac{1}{\alpha}$ may lead to oscillation (if graph is bipartite) • $\alpha = \frac{1}{d+1}$ ensures convergence • $\alpha = \frac{1}{2\sigma}$ ensures convergence (and all eigenvalues of *M* are non-negative) Diffusion Matrix — Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix *M* is defined as follows: $M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E, \\ 1 - \alpha \deg(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$

Diffusion Matrix -

Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix *M* is defined as follows:

$$M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E, \\ 1 - \alpha \deg(i) & \text{if } i = j, \\ 0 & \text{ (\# neighbors of } i) \end{cases} \text{ otherwise.}$$

Diffusion Matrix Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix M is defined as follows: $M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E, \\ 1 - \alpha \deg(i) & \text{if } i = j, \end{cases}$

$$\begin{array}{c} 0 & \text{otherwise.} \\ \text{Further let } \gamma(M) := \boxed{\max_{\mu_i \neq 1} |\mu_i|} \text{ where } \mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1 \\ \text{are the eigenvalues of } M. \end{array}$$

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix *M* is defined as follows:

$$M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E \\ 1 - \alpha \deg(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Further let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of M.

First-Order Diffusion: Load vector *x*^{*t*} satisfies

$$x^t = M \cdot x^{t-1}$$

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion parameter $\alpha > 0$, the diffusion matrix *M* is defined as follows:

$$M_{ij} = \begin{cases} \alpha & \text{if } (i,j) \in E \\ 1 - \alpha \deg(i) & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Further let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of M.

This can be also seen as a random walk on *G*!

First-Order Diffusion: Load vector *x*^t satisfies

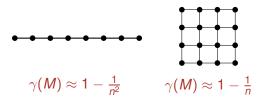
$$x^t = M \cdot x^{t-1}$$
. $\chi = M \cdot \chi$

1D grid

$$\gamma(M) \approx 1 - \frac{1}{n^2}$$

1D grid

2D grid



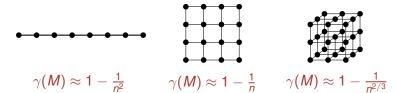
1D grid

3D grid

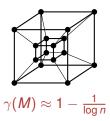


1D grid

3D grid

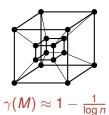


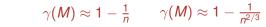
Hypercube



Hypercube

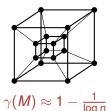
Random Graph





Hypercube

 $\gamma(M) \approx 1 - \frac{1}{n^2}$



Random Graph

 $\gamma(M) < 1$

Complete Graph

 $\gamma(M) \approx 0$

 $\gamma(M) \approx 1 - \frac{1}{\log n}$

 $\gamma(M) < 1$

2D grid

 $\gamma(M) \approx 1 - \frac{1}{n^2}$ $\gamma(M) \approx 1 - \frac{1}{n}$ $\gamma(M) \approx 1 - \frac{1}{n^{2/3}}$

Hypercube

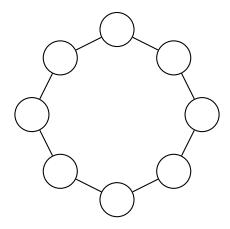
Random Graph

Complete Graph

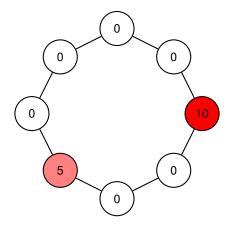
 $\gamma(M) pprox 0$

 $\gamma(M) \in (0, 1]$ measures connectivity of G

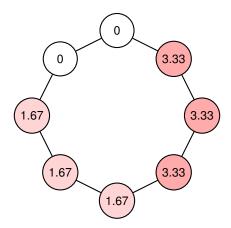
Diffusion on a Ring

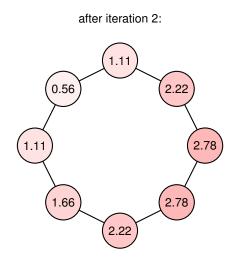


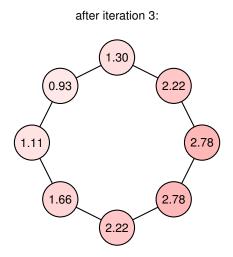
Diffusion on a Ring

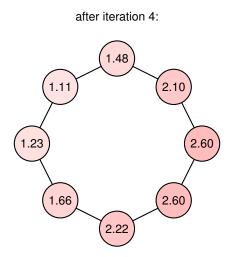


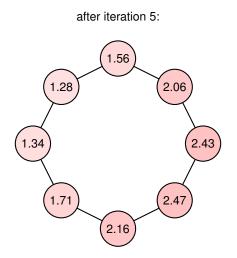
after iteration 1:

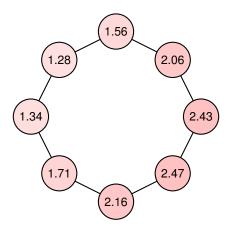


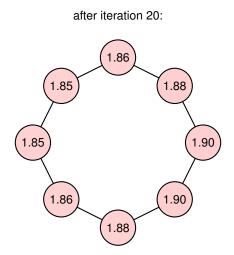












Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of M. Then for any iteration t,

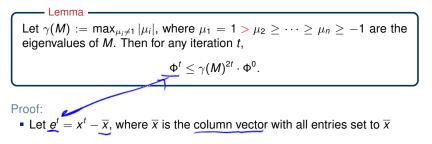
$$\Phi^t \leq \gamma(M)^{2t} \cdot \Phi^0.$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(M)^{2t} \cdot \Phi^0.$$

Proof:



Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$\boldsymbol{e}^{t} = \alpha_{1} \cdot \boldsymbol{v}_{1} + \alpha_{2} \cdot \boldsymbol{v}_{2} + \dots + \alpha_{n} \cdot \boldsymbol{v}_{n}$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $\underline{e^t = x^t \overline{x}}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}.$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}.$$

ion scheme,
$$e^{t} \text{ is orthogonal to } v_{1}$$

For the diffusion scheme,

 $e^{t+1} = Me^{t}$ $e^{t+1} = X^{t+1} - \overline{X} = M \cdot X^{t} - M \cdot \overline{X}$ $= M \cdot (X^{t} - \overline{X}) = M \cdot e^{t}$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

For the

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}.$$

diffusion scheme,
$$e^{t+1} = Me^{t} = M \cdot \left(\sum_{i=2}^{n} \alpha_{i} v_{i}\right)$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$\boldsymbol{e}^{t} = \alpha_{1} \cdot \boldsymbol{v}_{1} + \alpha_{2} \cdot \boldsymbol{v}_{2} + \dots + \alpha_{n} \cdot \boldsymbol{v}_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot \boldsymbol{v}_{i}.$$

• For the diffusion scheme,

$$\boldsymbol{e}^{t+1} = \boldsymbol{M}\boldsymbol{e}^{t} = \boldsymbol{M} \cdot \left(\sum_{i=2}^{n} \alpha_{i} \boldsymbol{v}_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} \boldsymbol{v}_{i}.$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}.$$

• For the diffusion scheme,

$$e^{t+1} = Me^{t} = M \cdot \left(\sum_{i=2}^{n} \alpha_{i} v_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} v_{i}.$$

Taking norms and using that the v_i's are orthogonal,

$$\|e^{t+1}\|_2 = \|Me^t\|_2$$

Let $\underline{\gamma}(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of M. Then for any iteration t,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

For the diff

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}$$

usion scheme,
$$e^{t+1} = Me^{t} = M \cdot \left(\sum_{i=2}^{n} \alpha_{i} v_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} v_{i}.$$

Taking norms and using that the vis are orthogonal,

$$\|e^{t+1}\|_2 = \|Me^t\|_2 = \sum_{i=2}^n \alpha_i^2 \mu_i^2 \|v_i\|_2$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

For the diff

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$e^{t} = \alpha_{1} \cdot v_{1} + \alpha_{2} \cdot v_{2} + \dots + \alpha_{n} \cdot v_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot v_{i}$$

usion scheme,
$$e^{t+1} = Me^{t} = M \cdot \left(\sum_{i=2}^{n} \alpha_{i} v_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} v_{i}.$$

Taking norms and using that the v_i's are orthogonal,

$$\|\boldsymbol{e}^{t+1}\|_{2} = \|\boldsymbol{M}\boldsymbol{e}^{t}\|_{2} = \sum_{i=2}^{n} \alpha_{i}^{2} \mu_{i}^{2} \|\boldsymbol{v}_{i}\|_{2} \leq \gamma^{2} \sum_{i=2}^{n} \alpha_{i}^{2} \|\boldsymbol{v}_{i}\|_{2}$$

Lemma Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of M. Then for any iteration t, $\Phi^t \le \gamma(M)^{2t} \cdot \Phi^0$.

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$\boldsymbol{e}^{t} = \alpha_{1} \cdot \boldsymbol{v}_{1} + \alpha_{2} \cdot \boldsymbol{v}_{2} + \dots + \alpha_{n} \cdot \boldsymbol{v}_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot \boldsymbol{v}_{i}.$$

• For the diffusion scheme,

$$\boldsymbol{e}^{t+1} = \boldsymbol{M}\boldsymbol{e}^{t} = \boldsymbol{M} \cdot \left(\sum_{i=2}^{n} \alpha_{i} \boldsymbol{v}_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} \boldsymbol{v}_{i}.$$

Taking norms and using that the v_i's are orthogonal,

$$\|\boldsymbol{e}^{t+1}\|_{2} = \|\boldsymbol{M}\boldsymbol{e}^{t}\|_{2} = \sum_{i=2}^{n} \alpha_{i}^{2} \mu_{i}^{2} \|\boldsymbol{v}_{i}\|_{2} \leq \gamma^{2} \sum_{i=2}^{n} \alpha_{i}^{2} \|\boldsymbol{v}_{i}\|_{2} = \underline{\gamma^{2} \cdot \|\boldsymbol{e}^{t}\|_{2}}$$

Lemma

Let $\gamma(M) := \max_{\mu_i \neq 1} |\mu_i|$, where $\mu_1 = 1 > \mu_2 \ge \cdots \ge \mu_n \ge -1$ are the eigenvalues of *M*. Then for any iteration *t*,

$$\Phi^t \leq \gamma(\boldsymbol{M})^{2t} \cdot \Phi^0.$$

Proof:

- Let $e^t = x^t \overline{x}$, where \overline{x} is the column vector with all entries set to \overline{x}
- Express *e^t* through the orthogonal basis given by the eigenvectors of *M*:

$$\boldsymbol{e}^{t} = \alpha_{1} \cdot \boldsymbol{v}_{1} + \alpha_{2} \cdot \boldsymbol{v}_{2} + \dots + \alpha_{n} \cdot \boldsymbol{v}_{n} = \sum_{i=2}^{n} \alpha_{i} \cdot \boldsymbol{v}_{i}.$$

• For the diffusion scheme,

$$\boldsymbol{e}^{t+1} = \boldsymbol{M}\boldsymbol{e}^{t} = \boldsymbol{M} \cdot \left(\sum_{i=2}^{n} \alpha_{i} \boldsymbol{v}_{i}\right) = \sum_{i=2}^{n} \alpha_{i} \mu_{i} \boldsymbol{v}_{i}.$$

• Taking norms and using that the v_i's are orthogonal,

$$\|e^{t+1}\|_{2} = \|Me^{t}\|_{2} = \sum_{i=2}^{n} \alpha_{i}^{2} \mu_{i}^{2} \|v_{i}\|_{2} \le \gamma^{2} \sum_{i=2}^{n} \alpha_{i}^{2} \|v_{i}\|_{2} = \gamma^{2} \cdot \|e^{t}\|_{2} \qquad \Box$$

Lemma

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

Proof:

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

Proof:

• Let $x^0 = \overline{x} + v_i$, where v_i is the eigenvector corresponding to μ_i

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

Proof:

• Let $x^0 = \overline{x} + v_i$, where v_i is the eigenvector corresponding to μ_i

Then

$$\boldsymbol{e}^{t} = \boldsymbol{M}\boldsymbol{e}^{t-1} = \boldsymbol{M}^{t}\boldsymbol{e}^{0} = \boldsymbol{M}^{t}\boldsymbol{v}_{i} = \mu_{i}^{t}\boldsymbol{v}_{i},$$

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

Proof:

• Let $x^0 = \overline{x} + v_i$, where v_i is the eigenvector corresponding to μ_i

Then

$$\boldsymbol{e}^{t} = \boldsymbol{M}\boldsymbol{e}^{t-1} = \boldsymbol{M}^{t}\boldsymbol{e}^{0} = \boldsymbol{M}^{t}\boldsymbol{v}_{i} = \mu_{i}^{t}\boldsymbol{v}_{i},$$

and

$$\Phi^{t} = \|\boldsymbol{e}^{t}\|_{2} = \mu_{i}^{2t} \|\boldsymbol{v}_{i}\|_{2} = \mu_{i}^{2t} \Phi^{0}.$$

For any eigenvalue μ_i , $1 \le i \le n$, there is an initial load vector x^0 so that

$$\Phi^t = \mu_i^{2t} \cdot \Phi^0.$$

Proof:

• Let $x^0 = \overline{x} + v_i$, where v_i is the eigenvector corresponding to μ_i

Then

$$\boldsymbol{e}^{t} = \boldsymbol{M}\boldsymbol{e}^{t-1} = \boldsymbol{M}^{t}\boldsymbol{e}^{0} = \boldsymbol{M}^{t}\boldsymbol{v}_{i} = \mu_{i}^{t}\boldsymbol{v}_{i},$$

and

$$\Phi^{t} = \|\boldsymbol{e}^{t}\|_{2} = \mu_{i}^{2t} \|\boldsymbol{v}_{i}\|_{2} = \mu_{i}^{2t} \Phi^{0}.$$

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

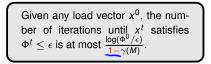
Linear System

- corresponds to Markov chain
- well-understood

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

Linear System

- corresponds to Markov chain
- well-understood



Here load consists of integers that cannot be divided further.

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

Linear System

- corresponds to Markov chain
- well-understood

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

Discrete Case

$$y^t = M \cdot y^{t-1} + \Delta^t$$

Linear System

- corresponds to Markov chain
- well-understood

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

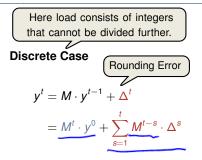
Here load consists of integers
that cannot be divided further.
Discrete Case
$$y^{t} = M \cdot y^{t-1} + \Delta^{t}$$

Linear System

- corresponds to Markov chain
- well-understood

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$



Linear System

- corresponds to Markov chain
- well-understood

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

Here load consists of integers
that cannot be divided further.
Discrete Case

$$y^{t} = M \cdot y^{t-1} + \Delta^{t}$$

 $= M^{t} \cdot y^{0} + \sum_{s=1}^{t} M^{t-s} \cdot \Delta^{s}$

Linear System

- corresponds to Markov chain
- well-understood

Given any load vector x^0 , the number of iterations until x^t satisfies $\Phi^t \leq \epsilon$ is at most $\frac{\log(\Phi^0/\epsilon)}{1-\gamma(M)}$.

Non-Linear System

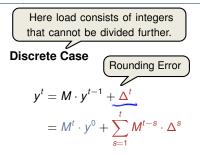
- rounding of a Markov chain
- harder to analyze

Idealised Case

$$x^{t} = M \cdot x^{t-1}$$
$$= M^{t} \cdot x^{0}$$

- corresponds to Markov chain
- well-understood

Given any load vector x^0 , the number of iterations until x^t satisfies $\Phi^t \leq \epsilon$ is at most $\frac{\log(\Phi^0/\epsilon)}{1-\gamma(M)}$.



Non-Linear System

- rounding of a Markov chain
- harder to analyze

How close can it be made to the idealised case?

II. Matrix Multiplication

Thomas Sauerwald

Easter 2015

Outline

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication

Matrix Multiplication

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \qquad \forall i, j = 1, 2, \dots, n.$$

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \qquad \forall i, j = 1, 2, \dots, n.$$

SQUARE-MATRIX-MULTIPLY (A, B)

n = A.rows2 let C be a new $n \times n$ matrix **for** i = 1 **to** n**for** j = 1 **to** n $c_{ij} = 0$ **for** k = 1 **to** n $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ **return** C

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

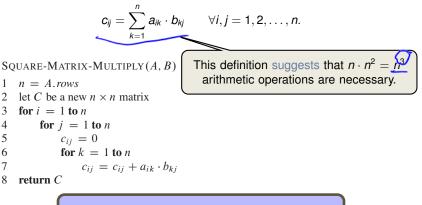
$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \qquad \forall i, j = 1, 2, \dots, n.$$

SQUARE-MATRIX-MULTIPLY (A, B)

n = A.rows2 let C be a new $n \times n$ matrix **for** i = 1 **to** n**for** j = 1 **to** n $c_{ij} = 0$ **for** k = 1 **to** n $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ **return** C

SQUARE-MATRIX-MULTIPLY(A, B) takes time $\Theta(n^3)$.

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by



SQUARE-MATRIX-MULTIPLY(A, B) takes time $\Theta(n^3)$.

Outline

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication

Assumption: *n* is always an exact power of 2.

Assumption: *n* is always an exact power of 2.

Divide & Conquer: Partition $\underline{A}, \underline{B}$, and \underline{C} into four $n/2 \times n/2$ matrices:

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition *A*, *B*, and *C* into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition *A*, *B*, and *C* into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition *A*, *B*, and *C* into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition *A*, *B*, and *C* into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

This corresponds to the four equations:

$$C_{41} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition *A*, *B*, and *C* into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

This corresponds to the four equations:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Each equation specifies
two multiplications of
 $n/2 \times n/2$ matrices and the
addition of their products.

$$\begin{aligned} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \\ C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21} \\ C_{11} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{aligned}$$

 $1 \quad n = A.rows$

- 2 let C be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

10 return C

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

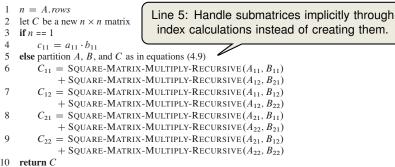
$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{11} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)



$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{11} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

1 n = A.rows

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

- 5 else partition A, B, and C as in equations (4.9)

n = A, rows 1

- 2 let C be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9) $C_{11} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}) 6

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE
$$(A_{12}, B_{21})$$

7
$$C_{12} =$$
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12})

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE
$$(A_{12}, B_{22})$$

8
$$C_{21} =$$
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11})

+ SQUARE-MAIRIX-MULTIPLY-RECURSIVE
$$(A_{22}, D_{21})$$

9
$$C_{22} =$$
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{12})
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})

10 return C

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ & \text{if } n > 1. \end{cases}$$

 $1 \quad n = A.rows$

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ \text{if } n > 1. \end{cases}$$
8 Multiplications

 $1 \quad n = A.rows$

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) & \text{if } n > 1. \end{cases}$$
8 Multiplications

1 n = A.rows

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) & \text{if } n > 1. \end{cases}$$
8 Multiplications
4 Additions and Partitioning

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

n = A, rows let C be a new $n \times n$ matrix 3 **if** n == 1 $c_{11} = a_{11} \cdot b_{11}$ 4 5 else partition A, B, and C as in equations (4.9) $C_{11} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}) 6 + SOUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21}) $C_{12} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12}) 7 + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22}) $C_{21} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11}) 8 + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21}) 9 $C_{22} =$ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{12}) + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22}) return C 10 Let T(n) be the runtime of this procedure. Then: if *n* = 1 T(n) =if *n* > 1. 8 Multiplications 4 Additions and Partitioning

 $1 \quad n = A.rows$

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: T(n) =

 $1 \quad n = A.rows$

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: $T(n) = \Theta(8^{\log_2 n})$

 $1 \quad n = A.rows$

- 2 let *C* be a new $n \times n$ matrix
- 3 **if** *n* == 1

4 $c_{11} = a_{11} \cdot b_{11}$

5 else partition A, B, and C as in equations (4.9)

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: $T(n) = \Theta(8^{\log_2 n}) = \Theta(n^3) \checkmark$ No improvement over the naive algorithm!

