
A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Sorting Networks Batcher’s Sorting Network 20

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Sorting Networks Batcher’s Sorting Network 20

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Sorting Networks Batcher’s Sorting Network 20

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Sorting Networks Batcher’s Sorting Network 20

Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory

I. Sorting Networks Batcher’s Sorting Network 20

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

From Expanders to Approximate Halvers

L R

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

I. Sorting Networks Batcher’s Sorting Network 21

Existence of Approximate Halvers

Proof:

X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs

For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)

Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output

Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output

Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X

Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| ≥ |Y |+ min{µ|Y |, n/2− |Y |}

= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| ≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| ≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| ≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

Existence of Approximate Halvers

Proof:
X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd ⇒ ud ∈ X
Since u was arbitrary:

|Y |+ |N(Y)| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y)| ≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut

I. Sorting Networks Batcher’s Sorting Network 22

AKS network vs. Batcher’s network

Donald E. Knuth (Stanford)

“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”

Richard J. Lipton (Georgia Tech)

“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

I. Sorting Networks Batcher’s Sorting Network 23

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Sorting Networks Batcher’s Sorting Network 24

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Sorting Networks Batcher’s Sorting Network 24

Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks

7 2

2 7

comparator

<
=
>

7 ?

2 ?

switch

7 5

2 4

balancer

I. Sorting Networks Batcher’s Sorting Network 24

Outline

Outline of this Course

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Sorting Networks Counting Networks 25

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one

I. Sorting Networks Counting Networks 26

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27

Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Proof (by induction on n)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Consider a MERGER[n]. Then if the inputs x1, . . . , xn/2 and xn/2+1, . . . , xn

have the step property, then so does the output y1, . . . , yn.

Key Lemma

Proof (by induction on n)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer

n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i

F1⇒ Z = d 1
2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .
Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

z1

z2

z3

z4

z′1

z′2
z′3

z′4

x1
x2
x3
x4
x5
x6
x7
x8

Proof (by induction on n)
Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2: Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .
Balancer between zj and z′j will ensure that the step property holds.

I. Sorting Networks Counting Networks 28

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

Bitonic Counting Network in Action

x1 y1

x2 y2

x3 y3

x4 y4

1

1

1

1

1

1

1

2

2

2

2

2

2

2

33

3

3

3

3

3

3

4

4

4

4

4

4

4

55

5

5

5

5

5

5

6

6

6

6

6

6

6

Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .

I. Sorting Networks Counting Networks 29

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Sorting Networks Counting Networks 30

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n

I. Sorting Networks Counting Networks 30

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C

S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network

Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S

Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.

C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires

S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires

By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.
Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.

C S

1

0

0

1

0

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

I. Sorting Networks Counting Networks 31

	Counting Networks

