A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth @Iog n). ]

[Quite elaborate construction, and involves huges constants.J
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n). ]

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,2 and the n/2 largerkeysin b, /241, .. ., bn.
N

[ Perfect halver of depth log, n exist ~ yields sorting networks of depth ©((log n)?). ]
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.

—
Approximate Halver £ =00

An (n. e)-approximate halver, e < 1, is a comparator network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo41, . .-, bn and at most ek of its k largest keys in by, ..., by2.
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A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.

Approximate Halver

An (n,e)-approximate halver, e < 1, is a comparator network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo41, - .-, bn and at most ek of it@k largest keys in by, ..., by/a.

'[ We will prove that such networks can be constructed in constant depth!

.
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Expander Graphs

~——— Expander Graphs \
A bipartite (n, d, p)-expander is a graph with:
= G has nvertices (n/2 on each side)
; . . eci
= the edge-set is the union of d matching
= For every subset S C V being in one part,

IN(S)| = min{y. - ||, n/2 — |S]}

W=

)
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Expander Graphs

~——— Expander Graphs
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is the union of d matchings
= For every subset S C V being in one part,

IN(S)| = miny: - |S],n/2 — | S|}
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Expander Graphs

~——— Expander Graphs \
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is the union of d matchings
= For every subset S C V being in one part,

INS)| = min{y:- |s1p/2 = 1S)
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Expander Graphs

~——— Expander Graphs \
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is the union of d matchings
= For every subset S C V being in one part,

IN(S)| > min{y:- S|, n/2 — |S]}

Expander Graphs:

= probabilistic constructio take d (disjoint) random matchings
= explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

= many applications in networking, complexity theory and coding theory
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From Expanders to Approximate Halvers

I. Sorting Networks Batcher’s Sorting Network
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Existence of Approximate Halvers

Proof:
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs

I. Sorting Networks

Batcher’s Sorting Network
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Existence of Approximate Halvers Pf 00 IC S+m+€ﬂ ‘)(

Proof: k@%S /][N(Y)’ >> l )/‘]

= Y := wires in lower half with kK smallest outputs

= X .:: wi{:es with the k smallest inputs 2 . 1 U(y)) < 'X |
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

= For every u € N(Y): 3 comparator (u, v)f v é'}/

I. Sorting Networks

Batcher’s Sorting Network

22



Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)
= Let u;, v; be their keys after the comparator
Let uy, vy be their keys at the output
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs

! |
= For every u € N(Y): 3 comparator (u, v) b
= Let u, v; be their keys after the comparator Ul Uy Ud

Let uy, vy be their keys at the output | |
| I

[

| 1

| I

| 1

! |

! +

[

| ]

| |

o

Vi Vi 7]

| |

| |

| 1

| |

| |

Lo
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)

" Notethatvy e YC X

! |
| I
) |
Let ut, v¢ be their keys after the comparator Ul Ut Ud
Let uy, vy be their keys at the output | |
| 1
[
| 1
| }
! !
! |
| +
[
| ]
| |
| |
| |
| |
Vi Vi Va
| |
| |
| 1
| |
| |
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)

" Notethatvy e YC X

= Further: ug < us < vy < vy
— —_—

! |
| I
. |
Let ut, v¢ be their keys after the comparator Ul Ut Ud
Let uy, vy be their keys at the output b ('f
| I
[ \
| 1
| I
! !
! |
| +
[
| ]
| |
| |
| |
| |
Vi Vi | Vd
| |
| |
| 1
| |
| |
Lo
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Existence of Approximate Halvers

Proof:

= X := wires with the k smallest inputs

= Y := wires in lower half with kK smallest outputs

= For every u € N(Y): 3 comparator (u, v)

" Let u, vs be Tﬁ‘éer eys after the comparator
Let uy, vy be their keys at the output

* Notethat vy € Y C X
= Further: ug < us < v
= Since u was arbitrary:

Y[+ IN(Y)[ < k.

ut

Ud

Vi

Vd
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Existence of Approximate Halvers

Proof:

X := wires with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparator (u, v)

Let u;, v¢ be their keys after the comparator

Let uy, v4 be their keys at the output

Notethat vy € Y C X

Further: ug < uy <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:

Uz

Ud

Vd

|
]
|
|
|
| vi
|
|
1
|
|
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Existence of Approximate Halvers

Proof:

X := wires with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparator (u, v)

Let u;, v¢ be their keys after the comparator

Let uy, v4 be their keys at the output

Notethat vy € Y C X

Further: ug < uy <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
[Y]+ IN(Y)]

Uz

Ud

Vd

|
]
|
|
|
| vi
|
|
1
|
|
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Existence of Approximate Halvers

Proof:

Egg I. Sorting Networks

X := wires with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparator (u, v)

Let u;, v¢ be their keys after the comparator

Let uy, v4 be their keys at the output

Notethat vy € Y C X

Further: ug < uy <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:

Y[ +]N(Y)| > Y] + min{ul Y], n/2 - | Y|

Uz

Ud

Vi

Vd
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Existence of Approximate Halvers

Proof:

Egg I. Sorting Networks

X := wires with the k smallest inputs

Y := wires in lower half with k smallest outputs
For every u € N(Y): 3 comparator (u, v)

Let u;, v¢ be their keys after the comparator

Let uy, vy be their keys at the output

Notethat vy € Y C X

Further: ug < uy <vi<vg=uge X

Since u was arbitrary:

Y]+ IN(Y)I < k.
———
Since G is a bipartite (n, d, )-expander:
[Y] + IN(Y)| > | Y]+ min{u|Y],n/2 — Y[}
—
=min{(1 + p)|Y],n/2}.

ut

Ud

Vi

Vd
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Existence of Approximate Halvers

Proof:
= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)
= Let u;, v; be their keys after the comparator
Let uy, vy be their keys at the output
Notethat vy € Y C X
Further: ug < uy <vi<vg=uge X
Since u was arbitrary:
Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
[Y] + IN(Y)| > | Y]+ min{u|Y],n/2 — Y[}
= min{(1 + )| Y|, n/2}.
Combining the two bounds above yields:

A+ Y| <k

Uz

Ud

Vi

Vd
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Existence of Approximate Halvers

Proof:
= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)
= Let u;, v; be their keys after the comparator
Let uy, vy be their keys at the output
Notethat vy € Y C X
Further: ug < uy <vi<vg=uge X
Since u was arbitrary:
Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
Y1+ IN(YV)[321 Y] +min{ul Y], n/2 — | Y]}
= min{(1 + )| Y|, n/2}.

Combining the two bounds above yields:

[Here we used thaj
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Existence of Approximate Halvers

Proof:
= X := wires with the k smallest inputs
= Y := wires in lower half with kK smallest outputs
= For every u € N(Y): 3 comparator (u, v)
= Let u;, v; be their keys after the comparator
Let uy, vy be their keys at the output
Notethat vy € Y C X
Further: ug < uy <vi<vg=uge X
Since u was arbitrary:
Y]+ IN(Y)I < k.
Since G is a bipartite (n, d, )-expander:
[Y] + IN(Y)| > | Y]+ min{u|Y],n/2 — Y[}
= min{(1 + )| Y|, n/2}.
Combining the two bounds above yields:

A+ mlY| <k

=. The same argument shows that at most € - k,
of the k largest input keys are

placed in by, ..., by 2 O

Uz

Ud

Vi

Vd

Egg I. Sorting Networks Batcher’s Sorting Network

22



AKS network vs. Batcher’s network

Donald E. Knuth (Stanford) Richard J. Lipton (Georgia Tech)
“Batcher's method is much “The A_KS.sorting network is
better, unless n exceeds the galactic: it needs that n be

larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”

total memory capacity of all
computers on earth!”
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Siblings of Sorting Network

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

comparator

2

<

| 7
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Siblings of Sorting Network

Sorting Networks comparator

= sorts any input of size n <
= special case of Comparison Networks =

||\>
V
<

Switching (Shuffling) Networks . switch 5

= creates a random permutation of n items o
= special case of Permutation Networks i.:,;t/

2 TN 2
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Siblings of Sorting Network

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

Switching (Shuffling) Networks

= creates a random permutation of n items
= special case of Permutation Networks

Counting Networks

= balances any stream of tokens over n wires
= special case of Balancing Networks

comparator

L P <
2] > |7

switch
7 ?
] \_ - :~_

&

ok
2 7z i S N ?
- L P
balancer
7 S
4~

518

2 | 4
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Outline

Counting Networks

I. Sorting Networks

Counting Networks
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Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.
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Counting Network

Distributed Counting

Processors collectively assign s&:cessive values from a given range.

Values could represent addresses in memories
or destinations on an interconnection network
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Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

—
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

O
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

© C

O
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,...)

© C

[Number of tokens differs by at most one]

O
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xs. xa X» be the number of tokens (ever received) on the
designated input wires

2. Let yi1,y2,. ... ¥o be the number of tokens (ever received) on the

designated output wires
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xq, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires
2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the

designated output wires
3. Inaquiescent state: 37, x; =Y.1, Vi

4. A counting network is a balancing network with the|step-property:

&ngﬂoranyi<j.
C44 3,333 3)
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xq, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires
2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the

designated output wires
3. Inaquiescent state: 37, x; =Y.1, Vi
4. A counting network is a balancing network with the step-property:

0<y—y <tiforanyi<]j.

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 37/% xoim1 = [$ 327, %], and 7% )i = [ 37, i)

2,160 X = Zi:‘y,,thenx,fy,forlft...,

3 Y xi=>7 yi+1,then3lj=12 .. nwithx;=y+1and X
— e — —

=y forj#i.
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Correctness of the Bitonic Counting Network

Facts

Let dy have the st ty. Then: 44333333‘
el X1,...,xna:/2 1,.... Vs have eseppropn)iry. en: 4,222 S
1. We have 37T xoi—1 = (30, x].and 7% xoi = [ § 300 X (L[ ’-{ L{. 3 2 3 3)
2. K xi=0 yithenx =y fori=1,.... . e D) i e
3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.
——— Key Lemma
Consider a MERGER[n]. Then if the inputs x1, ..., X2 and X211, ..., Xn
have the step property, then so does the output y1, ..., ¥a.
.
Apower of 20
Proof (by induction on n) TD ‘F
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fziﬂy,,thenx,7y,for/71,...,

Y =", yi+1,then3lj=1,2,... ,nwithx; = y;+1and x; = y; for j # i.

9 o690 oo o4

Proof (by induction on n)
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2:
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

—9 9 9o o4

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer

"n>2 letz,. . ., zyandz,...,z,, bethe outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

L 2 1
K3 2 1

- 1
Xg s ]
24 I

X
Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 A1

Xo I
X3 22

X4 I
X5 I

X 3 |
x7

xg 28

Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z,/,/2 be the outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. IfZLx,-fZi:wy,,thenx,7y,-f0r/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xy 2z
Xo 2] I
3 22
X4 zé I
% l 2
X |
X7 z"1
xg 24 I

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer

" n>2 letz,...,z,pandz,..., 2z, bethe outputs of the MERGER[n/2] subnetworks
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|
—2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.
[———

X1 Z1 r
Xo 21’ I
X3 22
X4 zé I
% 1 z
X )i
X7 z"1

)

Xg 2y

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,0and z{, ... ,z;/z have the step property
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X BB
X7 z"1
Xg 2y I

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,za0d z{,. .., ;/2 have the step property

= letZ:= E”,/f zandZ' = /22
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|
2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,for/71,...,

Y xi=Y",yi+1,then3lj=1,2,... ,nwithx; = y;+1and x; =

—yiforj#i.
714 (ot % ,
‘{"L (xs-’{'X&_IK} 31/-—— %I

l 3
o]
® Q)

Proof (by induction on n)
= Case n = 2 is clear, since MERGER(2] is a single balancer

"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z,2and z,. .., ;/2 have the step property

E”/f ziand Z' := E"/z z/

11/

I. Sorting Networks Counting Networks 28



Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifz,f’ﬂx,-fzi:“v,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

Xq 2
Xo 2] I
3 22
X4 zé I
% 1 2
X BB
X7 z"1
Xg 2y I

Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,za0d z{,. .., ;/2 have the step property
" letZ = E”ff ziand Z' .= Y12 2

2 2
R Z= 1+ 3 el and 2 = [ 2 x4 [0, 000 Xi]

o
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fzi:wy,,thenx,7y,-for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

X1 A==
%2 Eled

3 22,_-\

X4 22 .{

5 1 z:f)“j:
X6 23

X7 2=
Xg 24-{

Proof (by induction on n)

= Case n = 2 is clear, since MERGER(2] is a single balancer
"n>2 letz,...,zand z{,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks

"H=2z,...,za0d z{,. .., ;/2 have the step property
= letZ:= E”,/f zandZ' = /22
2 2
R Z= 1+ 3 el and 2 = [ 2 x4 [0, 000 Xi]
= Case 1: If Z = Z’, then F2 implies the output of MERGER[n] is y; = 2y (i—1)/2) ¥V

.
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,xnand yi, ..., y» have the step property. Then:

1. We have 372 xoiq = [ 30, %], and X7 2 xei = |1 300, x|

2. Ifzf’ﬂx,-fzi:wy,,thenx,7y,for/71,...,

3 Y =", yi+1,then3lj=1,2,...,nwith x; = y;+1and x; = y; for j # i.

s b 3 3 3
2 3 3] ¥ [3
x3§ 3 243
X4

L
% 2 21, 3]l/2
X7 2 2 =2
% 2 3 |3l2

Proof (by induction on n)

Case n = 2 is clear, since MERGER[2] is a single balancer____

n>2: letz,...,z,andz,. .. ,z;/z be the outputs of the MERGER[n/2] subnetworks

H=2,...,Zp2and Z{, ..., Z, , have the step property

LetZ := E”[f ziand Z' .= Y12 2

Fi=Z= 3 VEx0 + 1§ Slnjer Xl and 2/ = [ 3 1200 + 15 500000 X1

Case 1: If Z = Z’, then F2 implies the output of MERGER[N] is y; = 2y (i—1)/2) ¥V

Case 2: If |[Z — Z'| = 1, F3implies z; = z/ fori = 1,. .., n/2 except a unique j with z; # Z;.
Balancer between z; and zj’ will ensure that the step property holds.
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action

X1 4 » @
Xo 4 )] @
® 3 A ys

X4 Ya

Egg I. Sorting Networks Counting Networks 29



Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Bitonic Counting Network in Action
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Counting can be done as follows:
Add local counter to each output wire /, to

assign consecutive numbers j,i+n,i+2-n,...
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of log n BLOCK[n] networks each of which has depth log n
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.
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From Counting to Sorting [The converse is not true!]

Counting vs. Sorting )
| If a network is a counting network, then it is also a sorting network. ]
input
In':m . Gg.\*rrt

—=
N/

Bubble-Sort- Network (4]
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

Proof.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.

= Let C be a counting network, and S be the corresponding sorting network
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.

= Let C be a counting network, and S be the corresponding sorting network
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S
C S
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S
1
0
C 0 S
1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1
1 0

C 1 0 S
0 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

01 1
110 0

C 1 1 0 S
0o 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1 1 1
110]o0 0

C 1 1|1 0 S
0jojo 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

0 1 1 1 1
1100 1 0
C 1 1]1]o 0 S
0lojoo 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires

3

0 ahe ! 141 1 min o
100 1]1 0:

0 S

-
=

O
-
o 3
-
o
()

0]0]J]0O0]0 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

0 1 111 1
1100 1]1 0
C 1 1]1]o. 0 0 S
0lojloojo 1

E:g I. Sorting Networks Counting Networks 31



From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

0 1 111 1 0
1100 1]1 0 0
C 1 1]1]o. 0 0 1S
0lojloojo 1 1
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,an, € {0,1}"to S

= Define an input x1, X2,...,x, € {0,1}"to Cby x; = 1 iff s = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C = all zeros will be routed to the lower wires

= By the Zero-One Principle, Sis a sorting network. O
o 1 11 1 1 0
1]0]0 1]1 0 0
C 1 1100 0 1 S
0ojojoo0]oO 1 1
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