VI. Approximation Algorithms: Travelling Salesman Problem

Thomas Sauerwald

场圆环

Easter 2015

Introduction

General TSP

Metric TSP

	Eormal Definition
Γ	
L	
L	
L	
L	
L	
L	
L	

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

• Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

Introduction

General TSP

Metric TSP

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Theorem 35.3 ·

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Theorem 35.3 ·

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E\\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$m{c}(u,v) = egin{cases} 1 & ext{if } (u,v) \in E \
ho|V|+1 & ext{otherwise.} \end{cases}$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \geq (\rho|V|+1) + (|V|-1)$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

■ Gap of *ρ* + 1 between tours which are using only edges in *G* and those which don't

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho|V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of ρ + 1 between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho|V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of ρ + 1 between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)

Proof of Theorem 35.3 from a higher perspective

Introduction

General TSP

Metric TSP

Idea: First compute an MST, and then create a tour based on the tree.

Idea: First compute an MST, and then create a tour based on the tree.

Approx-TSP-Tour(G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using <u>MST-PRIM(G, c, r)</u>
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 return the hamiltonian cycle H

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 return the hamiltonian cycle H

Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$. humber of edges is $V_{/as}^2$ as G is a complete graph.

1. Compute MST

1. Compute MST

1. Compute MST √

- 1. Compute MST √
- 2. Perform preorder walk on MST

- 1. Compute MST \checkmark
- 2. Perform preorder walk on MST \checkmark

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

- 1. Compute MST \checkmark
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

- 1. Compute MST \checkmark
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

- 1. Compute MST √
- 2. Perform preorder walk on MST \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

VI. Travelling Salesman Problem

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour *H*^{*} and remove one edge

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour *H*^{*} and remove one edge

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)$

 $c(T) \leq c(T^*) \leq c(H^*)$

spanning tree as a subset of H*

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove one edge

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove one edge

 \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)^2$

exploiting that all edge costs are non-negative!

• Let W be the full walk of the spanning tree T (including repeated visits)

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

• Consider the optimal tour H^* and remove one edge \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)^4$

exploiting that all edge costs are non-negative!

• Let W be the full walk of the spanning tree T (including repeated visits)

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove one edge \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)$

exploiting that all edge costs are non-negative!

Let W be the full walk of the spanning tree T (including repeated visits)

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$

- Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$

- Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W)=2c(T)$$

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove one edge \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$

- Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W)=2c(T)\leq 2c(H^*)$$

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$
 - Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$
 - Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour *H*^{*} and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)$
 - Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) < c(H^*)$
 - Let W be the full walk of the spanning tree T (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)^2$
 - Let *W* be the full walk of the spanning tree *T* (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W)=2c(T)\leq 2c(H^*)$$

exploiting triangle inequality!

exploiting that all edge

costs are non-negative!

Deleting duplicate vertices from W yields a tour H with smaller cost:

Metric TSP

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)^2$
 - Let *W* be the full walk of the spanning tree *T* (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

exploiting that all edge

costs are non-negative!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W)$$

 $\begin{array}{c} \begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \xrightarrow{} \begin{array}{c} & & & & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{}$

Metric TSP

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)^{2}$
 - Let *W* be the full walk of the spanning tree *T* (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W)=2c(T)\leq 2c(H^*)$$

exploiting that all edge costs are non-negative!

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

Metric TSP

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- \Rightarrow yields a spanning tree and therefore $c(T) \leq c(H^*)^2$
 - Let *W* be the full walk of the spanning tree *T* (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

exploiting that all edge

costs are non-negative!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W) \leq 2c(H^*)$$

Proof of the Approximation Ratio

Theorem 35.2 ·

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove one edge
- ⇒ yields a spanning tree and therefore $c(T) \le c(H^*)^{2}$
 - Let *W* be the full walk of the spanning tree *T* (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W)=2c(T)\leq 2c(H^*)$$

exploiting triangle inequality!

exploiting that all edge

costs are non-negative!

Deleting duplicate vertices from W yields a tour H with smaller cost:

Metric TSP

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)

- 1: select a vertex $r \in G$. *V* to be a "root" vertex
- 2: compute a minimum spanning tree T for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M with minimum weight in the complete graph
- 5: over the odd-degree vertices in T
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T \cup M$
- 8: return H

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M with minimum weight in the complete graph
- 5: over the odd-degree vertices in T
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T \cup M$
- 8: return H

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

1. Compute MST

1. Compute MST

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching M of the odd vertices in T

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching M of the odd vertices in T

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching M of the odd vertices in T

1. Compute MST \checkmark

2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit Call vertices in TUM have even degree)

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST \checkmark
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian Cycle

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian $\mathsf{Cycle}\checkmark$

- 1. Compute MST √
- 2. Add a minimum-weight perfect matching *M* of the odd vertices in $T \checkmark$
- 3. Find an Eulerian Circuit \checkmark
- 4. Transform the Circuit into a Hamiltonian $\mathsf{Cycle}\checkmark$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76) -

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

