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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.
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Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

3+24+14+3=9
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of n! possible tours!

24+4+1+1=8
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

O\ Om—)
Solution space consists of n! possible tours! 3
AN

24+44+1+1=38
[Actually the right number is (n — 1)!/2]
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of n! possible tours!

N\

24+4+1+1=8

[Actually the right number is (n — 1)!/2J

Special Instances
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of n! possible tours!

N\

24+4+1+1=8

[Actually the right number is (n — 1)!/2J

Special Instances

= Metric TSP: costs satisfy triangle inequality:
vu,v,we V: c(u,w) < c(u,v) + c(v, w).

L*).L(/L;S I'Ch{,,r.ce& " c,o“"'P(d-e (.c)mPL;
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E
= Goal: Find a ham&tonian cycle of G with minimum cost.
(N

Solution spr;(:e consists of n! possible tours!
¥ AN

BActuaIIy the right number is (n — 1)!/2J
Special Instances —\

24+4+1+1=8

= Metric TSP: costs satlsfy triangle inequality:
Yu,v,we W: c(u,w) < c(u,v) + c(v, w).
= Euclidean TSP: cities are points in the Euclidean space, costs are )
equal to theif Euclidean distance} if irrabional, need te be OT roxwet]
by rafiorals numbers and then
BR Scaltol Yo tnEESErE
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O\

Solution space consists of n! possible tours!
AN

[Actually the right number is (n — 1)!/2J

24+4+1+1=8

Special Instances

. Even this version is |
= Metric TSP: costs satisfy triangle inequality:<\ NP hard (Ex. 35.2-2)
J

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their Euclidean distance
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History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

4x1 +9x < 36
Xq
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

2 @®318

Additional constraint to cut
the solution space of the LP
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

! Additional constraint to cut
A NC T TS the solution space of the LP

[ More cuts are needed to find integral solution ]
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General TSP
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof:
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Hardness of Approximation
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If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

G

(V,E)
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

G:(V,E) G/:(V,El)
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

o(u,v) = 1 if (u,v) € E,
"7 1plVI+1  otherwise.

G=(V,E) G = (V,E)
i
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.

G=(V.E) 1 G =(V,E)
p-4+1
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

o(u, v) 1 if (u,v) € E,
= f Large weight will render

prdt
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

Can create representations of G’ and 1 if (u,v) € E,
c(u,v) =

¢ in time polynomial in |V| and |E|! .
plV|+1 otherwise.

p-4+1
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.
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p-4+1
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
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= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:
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= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:
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plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

Reduction
G=(V,E) > 1 G =(V,E)
p-4+1
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

p-4+1

Reduction 1
G=(V,E) > ; 1 G =(V,E)
p-4+1
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

p-4+1
Reduction 1
G=(V,E) > ; 1 G =(V,E)
p-4+1 1
o———=0
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Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

qmm—{1 if (u,v) € E,

plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

= o(T) > (plVI+ 1)+ (IVI-1)
p-4+1
Reduction
G=(V,E) > 1 G =(V,E)
p-4+1
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Theorem 35.3
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Hardness of Approximation

Theorem 35.3

If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.
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= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

o v) = {1 if (u,v) € E,

plV|+1 otherwise.

= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

= o(T) 2 (plVI+ 1)+ (VI=1)=(p+ DIVI.
= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G' = (V, E’) be a complete graph with costs for each (u,v) € E’:

o v) = {1 if (u,v) € E,

plV|+1 otherwise.
= |f G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,
= o(T) 2 (plVI+ 1)+ (VI=1)=(p+ DIVI.

= Gap of p 4+ 1 between tours which are using only edges in G and those which don’t
= p-Approximation of TSP in G’ computes hamiltonian cycle in G (if one exists)

p-4+1
Reduction

G=(V.E) 1 G =(V,E)
p-4+1
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Proof of Theorem 35.3 from a higher perspective

General Method to prove inapproximability results! )

All instances with a
hamiltonian cycle

All instances
with cost < k

" ‘,‘ "
YES _C €a
Ingtances instances
L} . 1]
‘ NO ) QKP nlive

All instances
with cost > p - k

instances of Hamilton instances of TSP
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The TSP Problem with the Triangle Inequality

Idea: First compute an MST, and then create a tour based on the tree.
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The TSP Problem with the Triangle Inequality

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1
2

3

select a vertex r € G.V to be a “root” vertex

compute a minimum spanning tree 7 for G from root r
using MST-PRIM(G, ¢, )

let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of 7'

return the hamiltonian cycle H
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The TSP Problem with the Triangle Inequality

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1 selectavertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7 for G from root r
using MST-PRIM(G, ¢, r)

3 let H be alist of vertices, ordered according to when they are first visited
in a preorder tree walk of 7'

4 return the hamiltonian cycle H

O\

[Runtime is dominated by MST-PRIM, which is @(Vz).j
i

b
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Run of APPROX-TSP-TOUR
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Run of APPROX-TSP-TOUR
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk
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Run of APPROX-TSP-TOUR

te % From ¢ to l-\ o 1rto{"(3
1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Run of APPROX-TSP-TOUR

[Solution has cost ~ 19.704 - not optimal!]

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/

o
&

VI. Travelling Salesman Problem Metric TSP

|



Run of APPROX-TSP-TOUR

[This is the optimal solution (cost ~ 14.715).]

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk v/
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

solution H of APPROX-TSP
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

e e oo
R B O
| | | | | | | |
2O O 2 O
e B SRR
O SO
| | | | | | | | | | | |
solution H of APPROX-TSP optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge

e e oo
B S b S e
2O O 2 O
e B SRR
RS A
solution H of APPROX-TSP optimal solution H*
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Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge

e @ e
e e
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge
= yields a spanning tree and therefore
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge
= yields a spanning tree and therefore ¢(T) < c(H*)
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge% :;‘sﬁlso':pegr:gﬁfnfgl ?tjigeel ]
= yields a spanning tree and therefore ¢(T) < c(H*) g '
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof: —
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':peg;gﬁfnﬂl zggeel ]
= yields a spanning tree and therefore ¢(T) < c(H*) 9 i

= Let W be the full walk of the spanning tree T (including repeated visits)

e e oo
S0 8- Sl S Gt
O OO O 2 O
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solution H of APPROX-TSP optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof: —
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':peg;gﬁfnﬂl zggeel ]
= yields a spanning tree and therefore ¢(T) < c(H*) 9 i

= Let W be the full walk of the spanning tree T (including repeated visits)

B B Y B G N
| | | | | | | | |
P O 2O O 2 O
SO SO
B Caie i B Caliei i
| | | | | | | | | | | |
minimum spanning tree T optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof: —
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':peg;gﬁfnﬂl zggeel ]
= yields a spanning tree and therefore ¢(T) < c(H*) 9 i

= Let W be the full walk of the spanning tree T (including repeated visits)

Walk W = (a,b,c,b,h,b,a,d, e, f,e g, e, d,a) optimal solution H*
o
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':pegggﬁfnﬂlgzﬁggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

Walk W = (a,b,c,b,h,b,a,d, e, f,e g, e d,a) optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof: —
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':peg;gﬁfnﬂl zggeel ]
= yields a spanning tree and therefore ¢(T) < c(H*) 9 i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

o(W) = 2¢(T)

Walk W = (a,b,c,b,h,b,a,d, e, f,e g, e d,a) optimal solution H*
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= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':pegggﬁfnﬂgzﬁggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

o(W) = 2¢(T) < 2¢(H*)

= Deleting duplicate vertices from W yields a tour H

Walk W = (a,b,c,b,h,b,a,d, e, f,e g, e, d,a) optimal solution H*
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge 4 :;sﬁg)':pegggﬁfnﬂgzﬁggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

o(W) = 2¢(T) < 2¢(H*)

= Deleting duplicate vertices from W yields a tour H

|
.
|
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it I I
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| | | | | |
Walk W = (a,b,c. b, h,p. 4. d.e.f. f.0.6.4.2)
]
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Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge 4 :;(sﬁlso':rnegr:gﬂaglgzﬂggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

o(W) = 2¢(T) < 2¢(H*)

= Deleting duplicate vertices from W yields a tour H
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge 4 :;(sﬁlso':rnegr:gﬂaglgzﬂggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

(W) = 2¢(T) < 2¢(H*) [exploiting triangle inequality!]

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
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= Full walk traverses every edge exactly twice, so

(W) =2¢(T) < 2¢(H*) [exploiting triangle inequality!]
V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove one edge 4 :;(sﬁlso':rnegr:gﬂaglgzﬂggl ]
= yields a spanning tree and therefore ¢(T) < c(H*) i

= Let W be the full walk of the spanning tree T (including repeated visits)
= Full walk traverses every edge exactly twice, so

(W) =2¢(T) < 2¢(H*) [exploiting triangle inequality!]
V
= Deleting duplicate vertices from W yields a tour H with smaller cost:

c(H) < e(W) < 2¢(H") O
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T for G from root r
using MST-PRIM(G, ¢, r)
: compute a perfect matching M with minimum weight in the complete graph
over the odd-degree vertices in T
: let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of TU M
: return H
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APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T for G from root r
using MST-PRIM(G, ¢, r)
: compute a perfect matching M with minimum weight in the complete graph
over the odd-degree vertices in T
: let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of TU M
: return H
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Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling salesman
problem with the triangle inequality.
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Run of CHRISTOFIDES
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2. Add a minimum-weight perfect matching M of the odd vertices in T
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1. Compute MST v/ A
2. Add a minimum-weight perfect matching M of the odd vertices in T
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Run of CHRISTOFIDES

1. Compute MST v
2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Gircuit (al[( verBices wm TuM have even c{ﬁm&)
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Run of CHRISTOFIDES

1. Compute MST v
2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Circuit v/
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Run of CHRISTOFIDES

1. Compute MST v

2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Circuit v/

4. Transform the Circuit into a Hamiltonian Cycle
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2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Circuit v/

4. Transform the Circuit into a Hamiltonian Cyclev’
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Run of CHRISTOFIDES

[Solution has cost ~ 15.54 - within 10% of the optimum!]
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1. Compute MST v/ OP'E‘MQL 'tOlAr‘

2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Circuit v/
4. Transform the Circuit into a Hamiltonian Cyclev’
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Concluding Remarks

Theorem (Christofides’76)
3

There is a polynomial-time 3-approximation algorithm for the travelling
salesman problem with the triangle inequality.
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Concluding Remarks

Theorem (Christofides’76)
3

There is a polynomial-time 3-approximation algorithm for the travelling
salesman problem with the triangle inequality.

Theorem (Arora’96, Mitchell’96)
| There is a PTAS for the Euclidean TSP Problem.
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Concluding Remarks

Theorem (Christofides’76)
3

There is a polynomial-time 3-approximation algorithm for the travelling
salesman problem with the triangle inequality.

[Both received the Godel Award 2010]
z
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Concluding Remarks

Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling
salesman problem with the triangle inequality.

(Both received the Godel Award 2010]
z

Theorem (Arora’96, Mitchell’96)
| There is a PTAS for the Euclidean TSP Problem. ]

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It's an addiction.”

Jon Bentley 1991
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