PLC syntax type variable $::= \alpha$ $\boldsymbol{\tau}$ Types au o au function type $\forall \alpha (\tau) \forall$ -type Expressions M ::= xvariable $\lambda x : \tau (M)$ function abstraction M Mfunction application $\Lambda \alpha (M)$ type generalisation $M \, au$ type specialisation

(α and x range over fixed, countably infinite sets TyVar and Var respectively.)

Jatatures in PLC [Sect. 4.4] • défine a suitable PLC type for the data • define suitable PLC expressions for values & operations on the data show PLC expressions have correct typings & computational behaviour need to give PLC an operational semantics

In PLC, $\Lambda \alpha (M)$ is an anonymous notation for the function Fmapping each type τ to the value of $M[\tau/\alpha]$ (of some particular type). $F \tau$ denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on types

 $\left(\Lambda \, lpha \, (M)
ight) au o M[au / lpha]$

as well as the usual form of beta-reduction from λ -calculus

 $(\lambda x: au\left(M_{1}
ight))M_{2}
ightarrow M_{1}[M_{2}/x]$

M beta-reduces to M' in one step, $M \to M'$, means M' can be obtained from M (up to alpha-conversion, of course) by replacing a subexpression which is a *redex* by its corresponding *reduct*. The redex-reduct pairs are of two forms:

 $M \rightarrow M'$ indicates a chain of finitely many beta-reductions. ([†] possibly zero—which just means M and M' are alpha-convertible).

M is in *beta-normal form* if it contains no redexes.

$(\lambda x: \alpha_1 \rightarrow \alpha_1(xy)) ((\Lambda \alpha_2(\lambda z: \alpha_2(z)))(\alpha_1 \rightarrow \alpha_1))$

[pS3] $(\lambda x: \alpha_{1} \rightarrow \alpha_{1} (xy)) ((\lambda \alpha_{2} (\lambda z: \alpha_{2} (z)))(\alpha_{1} \rightarrow \alpha_{1}))$ $(\lambda z: \alpha_{1} \rightarrow \alpha_{1} (z))$

 $(\lambda x : \alpha_1 \rightarrow \alpha_1 (xy)) (\Lambda \alpha_2 (\lambda z : \alpha_2 (z))) (\alpha_1 \rightarrow \alpha_1)$ $(\lambda x : \alpha_1 \rightarrow \alpha_1 (xy)) (\lambda z : \alpha_1 \rightarrow \alpha_1 (z))$

[p53] $(\lambda x: \alpha_1 \rightarrow \alpha_1(xy)) (\Lambda \alpha_2(\lambda z: \alpha_2(z)))(\alpha_1 \rightarrow \alpha_1)$ $(\lambda x: \alpha, \neg \alpha, (xy))(\lambda z: \alpha, \neg \alpha, (z))$ $(\lambda_{z}:\alpha,\neg\alpha,(z))y$

$$(\lambda x: \alpha_1 \rightarrow \alpha_1 (xy)) (\Lambda \alpha_2 (\lambda z: \alpha_2(z))) (\alpha_1 \rightarrow \alpha_1)$$

$$(\lambda x: \alpha_1 \rightarrow \alpha_1 (xy)) (\lambda z: \alpha_1 \rightarrow \alpha_1 (z))$$

$$(\Lambda \alpha_2 (\lambda z: \alpha_2(z))) (\alpha_1 \rightarrow \alpha_1) y$$

$$(\lambda z: \alpha_1 \rightarrow \alpha_1 (z)) y$$

$$(\lambda x: \alpha_{1} \rightarrow \alpha_{1} (xy)) (\Lambda \alpha_{2} (\lambda z: \alpha_{2}(z))) (\alpha_{1} \rightarrow \alpha_{1})$$

$$(\lambda x: \alpha_{1} \rightarrow \alpha_{1}(xy)) (\lambda z: \alpha_{1} \rightarrow \alpha_{1}(z))$$

$$(\Lambda \alpha_{2} (\lambda z: \alpha_{2}(z))) (\alpha_{1} \rightarrow \alpha_{1}) y$$

$$(\lambda z: \alpha_{1} \rightarrow \alpha_{1}(z)) y$$

 $(\lambda x: \alpha_1 \rightarrow \alpha_1(xy)) | (\Lambda \alpha_2(\lambda z: \alpha_2(z)))(\alpha_1 \rightarrow \alpha_1)$ $(\lambda x: \alpha, \neg \alpha, (xy))(\lambda z: \alpha, \neg \alpha, (z))$ $(\Lambda \alpha_2(\lambda_2:\alpha_2(z)))(\alpha_1 \rightarrow \alpha_1)) \gamma$ $(\lambda_{z:\alpha, \neg \alpha, (z)})y$

Properties of PLC beta-reduction on typeable expressions

Suppose $\Gamma \vdash M : \tau$ is provable in the PLC type system. Then the following properties hold:

Subject Reduction. If $M \to M'$, then $\Gamma \vdash M' : \tau$ is also a provable typing.

Church Rosser Property. If $M \to^* M_1$ and $M \to^* M_2$, then there is M' with $M_1 \to^* M'$ and $M_2 \to^* M'$.

Strong Normalisation Property. There is no infinite chain $M \to M_1 \to M_2 \to \dots$ of beta-reductions starting from M.

Properties of PLC beta-reduction on typeable expressions

Suppose $\Gamma \vdash M : \tau$ is provable in the PLC type system. Then the following properties hold:

Subject Reduction. If $M \to M'$, then $\Gamma \vdash M' : \tau$ is also a provable typing.

Church Rosser Property. If $M \to M_1$ and $M \to M_2$, then there is M' with $M_1 \to M'$ and $M_2 \to M'$.

Strong Normalisation Property. There is no infinite chain $M \to M_1 \to M_2 \to \dots$ of beta-reductions starting from M.

<u>NB</u> for the <u>untypeable</u> expression $M \stackrel{\text{d}}{=} \lambda x : \alpha(xx)$, $MM = (\lambda x : \alpha(xx))M \longrightarrow MM \longrightarrow MM \longrightarrow \cdots$

heorem 4.4.2 [p54]

Existence: start from M & reduce any old way... must eventually stop by SN $\frac{1}{N_1} \xrightarrow{\sim} N_1$ Uniqueness: 'if M $\frac{1}{N_2} \xrightarrow{\sim} N_2$

Theorem 4.4.2 [p54]

Existence: start from M & reduce any old wmy ... must eventually stop by SN Uniqueness: 'if M "* N' by CR

Theorem 4.4.2 [p54]

Existence: start from M & reduce any old way...
must eventually stop by
$$5N$$

Uniqueness: 'if M N_1 N_1 N_1
 N_2 N_2

By definition, $M =_{\beta} M'$ holds if there is a finite chain

 $M - \cdot - \cdot \cdot - M'$

where each — is either \rightarrow or \leftarrow , i.e. a beta-reduction in one direction or the other. (A chain of length zero is allowed—in which case M and M' are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable PLC expressions, $M =_{\beta} M'$ holds if and only if there is some beta-normal form N with

 $M \rightarrow^* N^* \leftarrow M'$ in other words, = β is the <u>smallest</u> equivalence relation containing \rightarrow

52

$$bool \stackrel{\mathrm{def}}{=} \forall \alpha \ (\alpha \to (\alpha \to \alpha))$$

True
$$\stackrel{\text{def}}{=} \Lambda \alpha \left(\lambda x_1 : \alpha, x_2 : \alpha \left(x_1 \right) \right)$$

$$\textit{False} \stackrel{\text{def}}{=} \Lambda \alpha \left(\lambda \, x_1 : \alpha, x_2 : \alpha \left(x_2 \right) \right)$$

 $if \stackrel{\mathrm{def}}{=} \Lambda lpha \left(\lambda \, b : bool, x_1 : lpha, x_2 : lpha \left(b \, lpha \, x_1 \, x_2
ight)
ight)$

PLC operator association Rmk 4.2.2 P45] $M_1 M_2 M_3$ means $(M_1 M_2) M_3$ $M_1 M_2 T$ means $(M_1 M_2) T$, etc. $\forall \alpha_1, \alpha_2(\tau)$ means $\forall \alpha_1(\forall \alpha_2(\tau))$ $\lambda x_1: \tau_1, \tau_2: \tau_2(M)$ means $\lambda x_1: \tau_1(\lambda x_2: \tau_2(M))$ $\Lambda \alpha_1, \alpha_2(M)$ means $\Lambda \alpha_1(\Lambda \alpha_2(M))$

$$bool \stackrel{\text{def}}{=} \forall \alpha (\alpha \to (\alpha \to \alpha)) \qquad \text{have type} \\ True \stackrel{\text{def}}{=} \Lambda \alpha (\lambda x_1 : \alpha, x_2 : \alpha (x_1)) \qquad bool \\ False \stackrel{\text{def}}{=} \Lambda \alpha (\lambda x_1 : \alpha, x_2 : \alpha (x_2)) \\ if \stackrel{\text{def}}{=} \Lambda \alpha (\lambda b : bool, x_1 : \alpha, x_2 : \alpha (b \alpha x_1 x_2)) \\ \text{has type} \quad \forall \alpha (bool \to (\alpha \to \alpha))) \end{pmatrix}$$

(var)	$\Gammadash x: au$ if $(x: au)\in\Gamma$
(fn)	$rac{\Gamma, x: au_1 dash M: au_2}{\Gammadash \lambda x: au_1\left(M ight): au_1 o au_2} \hspace{0.2cm} ext{if} \hspace{0.1cm} x otin dom (\Gamma)$
(app)	$egin{array}{cccccccccccccccccccccccccccccccccccc$
(gen)	$\frac{\Gamma \vdash M: \tau}{\Gamma \vdash \Lambda \alpha (M): \forall \alpha (\tau)} \text{if } \alpha \notin ftv(\Gamma)$
(\mathbf{spec})	$rac{\Gammadash M:oralllpha\left(au_{1} ight)}{\Gammadash M au_{2}: au_{1}[au_{2}/lpha]}$

 $\begin{bmatrix} p56 \end{bmatrix} \text{If } \begin{cases} M_1 \rightarrow \text{*Tme} \\ M_2 \rightarrow \text{*N} \end{cases} , \text{ then }$

if TM, M2 M3 ->* if T The M2 M3

$$\begin{bmatrix} p56 \end{bmatrix} \text{If } \begin{cases} M_1 \longrightarrow \text{True} \\ M_2 \longrightarrow \text{N} \end{cases}, \text{ then}$$

if
$$\tau M_1 M_2 M_3 \rightarrow^*$$
 if $\tau Tme M_2 M_3$
 $\Lambda_{\alpha}(...) \tau Tme M_2 M_3$

$$\begin{bmatrix} p56 \end{bmatrix} \text{If } \begin{cases} M_1 \longrightarrow \text{True} \\ M_2 \longrightarrow \text{N} \end{cases}, \text{ then}$$

if
$$\tau M_1 M_2 M_3 \rightarrow^*$$
 if $\tau Tme M_2 M_3$
 $\Lambda \alpha(\dots) \tau^{\text{H}} Tme M_2 M_3$
 $(\lambda b: bod, x_1: \tau, x_2: \tau (b \tau x_1 x_2)) Tme M_2 M_3$

$$\begin{bmatrix} p56 \end{bmatrix} \text{If} \begin{cases} M_1 \rightarrow \text{*Tme} \\ M_2 \rightarrow \text{*N} \end{cases}, \text{ then}$$
if $\tau M_2 M_3 \rightarrow \text{*if} \tau \text{Tme} M_2 M_3$

$$\int \alpha(\dots) \tau \text{Tme} M_2 M_3$$

$$(\lambda b: bool, x_1: \tau, x_2: \tau (b \tau x_1 x_2)) \text{Tme} M_2 M_3$$

$$\int J_* \\ \text{Tme} \tau M_2 M_3$$

$$\begin{bmatrix} p56 \end{bmatrix} \text{If } \begin{cases} M_1 \longrightarrow \text{*Tme} \\ M_2 \longrightarrow \text{*N} \end{cases}, \text{ then}$$
if $\tau M_2 M_3 \longrightarrow \text{*if } \tau \text{Tme } M_2 M_3$

$$\int \alpha(\dots) \tau \text{Tme } M_2 M_3$$

$$(\lambda b: bool, x_i: \tau, x_2: \tau (b \tau x_1 x_2)) \text{Tme } M_2 M_3$$

$$\int \lambda \star \text{Tme } \tau M_2 M_3$$

$$\| \\ \wedge \alpha (\lambda x_1: \alpha_1 x_2: \alpha(x_1)) \tau M_2 M_3$$

$$\frac{\text{FACT}: \text{True} \triangleq \Lambda \alpha (\lambda x_1, \lambda_2: \alpha (x_1))}{\text{False} \triangleq \Lambda \alpha (\lambda x_1, \lambda_2: \alpha (x_2))}$$
are the only closed expressions in
 β -normal form of type bool $\triangleq \forall \alpha (\alpha \cdot \alpha \cdot \alpha \cdot \alpha)$.