
Security I – retired slides

Markus Kuhn

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/teaching/1213/SecurityI/

Lent 2013 – Part IB

1 / 41

http://www.cl.cam.ac.uk/teaching/1213/SecurityI/


Secure hash functions

A hash function h : {0, 1}∗ → {0, 1}n efficiently maps arbitrary-length
input bit strings onto (usually short) fixed-length bitstrings such that the
output is uniformly distributed (for non-repeating input values).

Hash functions are commonly used for fast table lookup or as checksums.

A secure n-bit hash function is in addition expected to offer the following
properties:

I Preimage resistance (one-way): For a given value y, it is
computationally infeasible to find x with h(x) = y.

I Second preimage resistance (weak collision resistance): For a given
value x, it is computationally infeasible to find x′ with h(x′) = h(x).

I Collision resistance: It is computationally infeasible to find a pair
x 6= y with h(x) = h(y).

2 / 41



Secure hash functions: standards

I MD5: n = 128
still widely used today, but collisions were found in 2004
http://www.ietf.org/rfc/rfc1321.txt

I SHA-1: n = 160
widely used today in many applications, but 269-step algorithm to
find collisions found in 2005, being phased out

I SHA-2: n = 224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, best existing standard
FIPS 180-3 US government secure hash standard,
http://csrc.nist.gov/publications/fips/

I SHA-3: Keccak wins 5-year NIST contest in October 2012
no length-extension attack, arbitrary-length output,
can also operate as PRNG, very different from SHA-1/2.
(other finalists: BLAKE, Grøstl, JH, Skein)
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/

3 / 41

http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/


Secure hash functions: Merkle–Damg̊ard construction

Fast secure hash functions such as MD5 or SHA-1 are based on a PRF
C : {0, 1}n × {0, 1}k → {0, 1}n called compression function.

First, the input bitstring X is padded in an unambiguous way to a
multiple of the compression function’s input block size k. If we would
just add zero bits for padding, for instance, then the padded versions of
two strings which differ just in the number of trailing “zero” bits would
be indistinguishable (10101 + 000 = 10101000 = 1010100 + 0). By
padding with a “one” bit (even if the length was already a multiple of k
bits!), followed by between 0 and k − 1 “zero” bits, the padding could
always unambiguously be removed and therefore this careful padding
destroys no information.

Then the padded bitstring X ′ is split into m k-bit blocks X1, . . . , Xm,
and the n-bit hash value H(X) = Hm is calculated via the recursion

Hi = C(Hi−1, Xi)

where H0 is a constant n-bit start value.

MD5 and SHA-1 for instance use block sizes of k = 512 bits.

4 / 41



One-way function from block cipher (Davies–Meyer)

A block cipher can be turned into a one-way function by XORing the
input onto the output. This prevents decryption, as the output of the
blockcipher cannot be reconstructed from the output of the one-way
function.

EKX HK(X)⊕

Another way of getting a one-way function is to use the input as a key in
a block cipher to encrypt a fixed value.

Both approaches can be combined to use a block cipher E as the
compression function in a secure hash function:

Hi = EXi(Hi−1)⊕Hi−1

5 / 41



Hash-based message authentication code

Hash a message M concatenated with a key K:

MACK(M) = h(K,M)

This construct is secure if h is a pseudo-random function or is a modern
secure hash function such as SHA-3.

Danger: If h uses the Merkle–Damg̊ard construction, an attacker can
call the compression function again on the MAC to add more blocks to
M , and obtain the MAC of a longer M ′ without knowing the key!

To prevent such a message-extension attack, variants like

MACK(M) = h(h(K,M))

can be used to terminate the iteration of the compression function in a
way that the attacker cannot continue.

6 / 41



HMAC

HMAC is a standardized technique that is widely used to calculate a
message-authentication code using a Merkle–Damg̊ard-style secure hash
function h, such as MD5 or SHA-1:

HMACK = h(K ⊕X1, h(K ⊕X2,M))

The fixed padding values X1, X2 used in HMAC extend the length of the
key to the input size of the compression function, thereby permitting
precomputation of its first iteration.
http://www.ietf.org/rfc/rfc2104.txt

7 / 41

http://www.ietf.org/rfc/rfc2104.txt


More applications of secure hash functions I

Password hash chain

R0 = random

Ri+1 = h(Ri) (0 ≤ i < n)

Store Rn in a host and give list Rn−1, Rn−2, . . . , R0 as one-time
passwords to user. When user enters password Ri−1, its hash h(Ri−1) is
compared with the password Ri stored on the server. If they match, the
user is granted access and Ri−1 replaces Ri.
Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770–772,
1981. http://doi.acm.org/10.1145/358790.358797

Proof of prior knowledge / secure commitment
You have today an idea that you write down in message M . You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. So you publish h(M) today.
If the entropy of M is small (e.g., M is a simple password), there is a risk that h can be inverted
successfully via brute-force search. Solution: publish h(N,M) where N is a random bit string
(like a key). When the time comes to reveal M , also reveal N . Publishing h(N,M) can also be
used to commit yourself to M , without revealing it yet.

8 / 41

http://doi.acm.org/10.1145/358790.358797


More applications of secure hash functions II

Hash tree
Leaves contain hash values of messages, each inner node contains the
hash of the concatenated values in the child nodes directly below it.

Advantages of tree over hashing concatenation of all messages:

I Update of a single message requires only recalculation of hash values
along path to root.

I Verification of a message requires only knowledge of values in all
direct children of nodes in path to root.

One-time signatures
Secret key: 2n random bit strings Ri,j (i ∈ {0, 1}, 1 ≤ j ≤ n)

Public key: 2n bit strings h(Ri,j)

Signature: (Rb1,1, Rb2,2, . . . , Rbn,n), where h(M) = b1b2 . . . bn

9 / 41



More applications of secure hash functions III

Stream authentication
Alice sends to Bob a long stream of messages M1,M2, . . . ,Mn. Bob
wants to verify Alice’s signature on each packet immediately upon arrival,
but it is too expensive to sign each message individually.

Alice calculates

C1 = h(C2,M1)

C2 = h(C3,M2)

C3 = h(C4,M3)

· · ·
Cn = h(0,Mn)

and then sends to Bob the stream

C1,Signature(C1), (C2,M1), (C3,M2), . . . , (0,Mn).

Only the first check value is signed, all other packets are bound together
in a hash chain that is linked to that single signature.

10 / 41



Secret sharing

A (t, n) secret sharing scheme is a mechanism to distribute shares
S1, . . . , Sn of a secret key S (0 ≤ S < m) among parties P1, . . . , Pn such
that any t of them can together reconstruct the key, but any group of
t− 1 cannot.

Unanimous consent control – (n, n) secret sharing
I For all 1 ≤ i < n generate random number 0 ≤ Si < m and give it

to Pi.

I Give Sn = S −
∑n−1

i=1 Si mod m to Pn.

I Recover secret as S =
∑n

i=1 Si mod m.

Can also be implemented with bitstrings and XOR instead of modular
arithmetic.

11 / 41



Secret sharing – Shamir’s threshold scheme

I Choose a prime p > max(S, n).

I Choose a polynomial

f(x) =
t−1∑
j=0

ajx
j

with a0 = S and random numbers 0 ≤ aj < p (1 ≤ j < t).

I For all 1 ≤ i ≤ n compute Si = f(i) mod p and give it to Pi.

I Recover secret S = f(0) by Lagrange interpolation of f through any
t points (xi, yi) = (i, Si). Note that deg(f) = t− 1.

Lagrange interpolation:

If (xi, yi) for 1 ≤ i ≤ t are points of a polynomial f with deg(f) < t:

f(x) =
t∑

i=1

yi
∏

1≤j≤t
j 6=i

x− xj

xi − xj

12 / 41



Diffie-Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a suitably large prime number p and a generator g ∈ Z∗p
(2 ≤ g ≤ p− 2), which can be made public. A generates x and B
generates y, both random numbers out of {1, . . . , p− 2}.

A→ B : gx mod p

B → A : gy mod p

Now both can form (gx)y = (gy)x and use a hash of it as a shared key.

The eavesdropper faces the Diffie-Hellman Problem of determining gxy

from gx, gy and g, which is believed to be equally difficult to the
Discrete Logarithm Problem of finding x from gx and g in Z∗p. This is

infeasible if p > 21000 and p− 1 has a large prime factor.

The DH key exchange is secure against a passive eavesdropper, but not
against middleperson attacks, where gx and gy are replaced by the
attacker with other values.
W. Diffie, M.E. Hellman: New Directions in Cryptography. IEEE IT-22(6), 1976-11, pp 644–654.

13 / 41



ElGamal encryption

The DH key exchange requires two messages. This can be eliminated if
everyone publishes his gx as a public key in a sort of phonebook.

If A has published (p, g, gx) as her public key and kept x as her private
key, then B can also generate for each message a new y and send

B → A : gy mod p, (gx)y ·M mod p

where M ∈ Zp is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

[(gx)y ·M ] · [(gy)p−1−x] mod p = M

to decrypt M .

In practice, M is again not the real message, but only the key for an
efficient block cipher that protects confidentiality and integrity of the
bulk of the message (hybrid cryptography).
With the also widely used RSA asymmetric cryptography scheme, encryption and decryption
commute. This allows the owner of a secret key to sign a message by “decrypting” it with her
secret key, and then everyone can recover the message and verify this way the signature by
“encrypting” it with the public key.

14 / 41



ElGamal signature

Asymmetric cryptography also provides digital signature algorithms,
where only the owner of a secret key can generate a signatures for a
message M that can be verified by anyone with the public key.

If A has published (p, g, gx) as her public key and kept x as her private
key, then in order to sign a message M ∈ Zp (usually hash of real
message), she generates a random number y (with 0 < y < p− 1 and
gcd(y, p− 1) = 1) and solves the linear equation

x · gy + y · s ≡M (mod p− 1) (1)

for s and sends to the verifier B the signed message

A→ B : M, gy mod p, s = (M − x · gy)/y mod (p− 1)

who will raise g to the power of both sides of (1) and test the resulting
equation:

(gx)g
y

· (gy)s ≡ gM (mod p)

Warning: Unless p and g are carefully chosen, ElGamal signatures can be vulnerable to forgery:
D. Bleichenbacher: Generating ElGamal signatures without knowing the secret key.
EUROCRYPT ’96. http://www.springerlink.com/link.asp?id=xbwmv0b564gwlq7a

15 / 41

http://www.springerlink.com/link.asp?id=xbwmv0b564gwlq7a


Public-key infrastructure I

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/private key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C issues
a digitally signed public key certificate

CertC(A) = {A,KA, T, L}K−1
C

in which C confirms that the public key KA belongs to A starting at
time T and that this confirmation is valid for the time interval L, and all
this is digitally signed with C’s private signing key K−1

C .

Anyone who knows C’s public key KC from a trustworthy source can use
it to verify the certificate CertC(A) and obtain a trustworthy copy of A’s
key KA this way.

17 / 41



Public-key infrastructure II

We can use the operator • to describe the extraction of A’s public key
KA from a certificate CertC(A) with the certification authority public
key KC :

KC • CertC(A) =

{
KA if certificate valid
failure otherwise

The • operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C might contain a
reference to an online certificate revocation list published by C, which
lists all public keys that might have become compromised (e.g., the
smartcard containing K−1

A was stolen or the server storing K−1
A was

broken into) and whose certificates have not yet expired.

18 / 41



Public-key infrastructure III

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

KC1 • CertC1 (C2) • CertC2 (C3) • · · · • CertCn−1 (Cn) • CertCn(B) = KB

A has received directly a trustworthy copy of KC1 (which many
implementations store locally as a certificate CertA(C1) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities can be made part of a hierarchical tree, in which
members of layer n verify the identity of members in layer n− 1 and
n + 1. For example layer 1 can be a national CA, layer 2 the computing
services of universities and layer 3 the system administrators of individual
departments.
Practical example: A personally receives KC1

from her local system administrator C1, who
confirmed the identity of the university’s computing service C2 in CertC1

(C2), who confirmed the
national network operator C3, who confirmed the IT department of B’s employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.

19 / 41



Some popular Unix cryptography tools

I ssh [user@]hostname [command] — Log in via encrypted link to
remote machine (and if provided execute “command”). RSA or DSA
signature is used to protect Diffie-Hellman session-key exchange and
to identify machine or user. Various authentication mechanisms, e.g.
remote machine will not ask for password, if user’s private key
(~/.ssh/id_rsa) fits one of the public keys listed in the home
directory on the remote machine (~/.ssh/authorized_keys).
Generate key pairs with ssh-keygen.
http://www.openssh.org/

I pgp, gpg — Offer both symmetric and asymmetric encryption,
digital signing and generation, verification, storage and management
of public-key certificates in a form suitable for transmission via email.
http://www.gnupg.org/, http://www.pgpi.org/

I openssl — Tool and library that implements numerous standard
cryptographic primitives, including AES, X.509 certificates, and
SSL-encrypted TCP connections.
http://www.openssl.org/

20 / 41

http://www.openssh.org/
http://www.gnupg.org/
http://www.pgpi.org/
http://www.openssl.org/


TEA, a Tiny Encryption Algorithm

TEA is a 64-bit block cipher with 128-bit key and 64-round Feistel
structure, designed at the Computer Lab by David Wheeler and Roger
Needham for 32-bit processors. The aim was to find a cipher so simple
that the implementation can be memorised, not maximum performance:

void code(long *v, long *k)

{

unsigned long y = v[0], z = v[1], sum = 0;

unsigned long delta=0x9e3779b9, n = 32;

while (n-- > 0) {

sum += delta;

y += ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);

z += ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);

}

v[0]=y ; v[1]=z;

}

ftp://ftp.cl.cam.ac.uk/users/djw3/tea.ps

21 / 41



Classification of operating-system security I

In 1983, the US DoD published the “Trusted computer system evaluation
criteria (TCSEC)”, also known as “Orange Book”.

It defines several classes of security functionality required in the TCB of
an operating system:

I Class D: Minimal protection – no authentication, access control, or
object reuse (example: MS-DOS, Windows98)

I Class C1: Discretionary security protection – support for
discretionary access control, user identification/authentication,
tamper-resistant kernel, security tested and documented (e.g.,
classic Unix versions)

I Class C2: Controlled access protection – adds object reuse, audit
trail of object access, access control lists with single user granularity
(e.g., Unix with some auditing extensions, Windows NT in a special
configuration)

22 / 41



Classification of operating-system security II

I Class B1: Labeled security protection – adds confidentiality labels for
objects, mandatory access control policy, thorough security testing

I Class B2: Structured protection – adds trusted path from user to
TCB, formal security policy model, minimum/maximum security
levels for devices, well-structured TCB and user interface, accurate
high-level description, identify covert storage channels and estimate
bandwidth, system administration functions, penetration testing,
TCB source code revision control and auditing

I Class B3: Security domains – adds security alarm mechanisms,
minimal TCB, covert channel analysis, separation of system
administrator and security administrator

I Class A1: Verified design – adds formal model for security policy,
formal description of TCB must be proved to match the
implementation, strict protection of source code against
unauthorised modification

23 / 41



Common Criteria
In 1999, TCSEC and its European equivalent ITSEC were merged into
the Common Criteria for Information Technology Security Evaluation.

I Covers not only operating systems but a broad spectrum of security
products and associated security requirements

I Provides a framework for defining new product and application
specific sets of security requirements (protection profiles)
E.g., NSA’s Controlled Access Protection Profile (CAPP) replaces Orange Book C2.

I Separates functional and security requirements from the intensity of
required testing (evaluation assurance level, EAL)

EAL1: tester reads documentation, performs some functionality tests
EAL2: developer provides test documentation and vulnerability analysis for review
EAL3: developer uses RCS, provides more test and design documentation
EAL4: low-level design docs, some TCB source code, secure delivery, independent vul. analysis
(highest level considered economically feasible for existing product)
EAL5: Formal security policy, semiformal high-level design, full TCB source code, indep. testing
EAL6: Well-structured source code, reference monitor for access control, intensive pen. testing
EAL7: Formal high-level design and correctness proof of implementation

E.g., Windows Vista Enterprise was evaluated for CAPP at EAL4 + ALC FLR.3 (flaw remediation).
http://www.commoncriteriaportal.org/

24 / 41

http://www.commoncriteriaportal.org/


Network security

“It is easy to run a secure computer system. You merely have to disconnect all connections
and permit only direct-wired terminals, put the machine in a shielded room, and post a

guard at the door.” — Grampp/Morris

Problems:

I Wide area networks allow attacks from anywhere, often via several
compromised intermediary machines, international law enforcement
difficult

I Commonly used protocols not designed for hostile environment

• authentication missing or based on source address, cleartext
password, or integrity of remote host

• missing protection against denial-of-service attacks

I Use of bus and broadcast technologies, promiscuous-mode network
interfaces

I Vulnerable protocol implementations

I Distributed denial-of-service attacks

25 / 41



TCP/IP security

TCP/IP transport connections are
characterised by:

I Source IP address

I Destination IP address

I Source Port

I Destination Port

Network protocol stack:

Application

(Middleware)

Transport

Network

Data Link
Physical

IP addresses identify hosts and port numbers distinguish between
different processes within a host. Port numbers < 1024 are “privileged”;
under Unix only root can open them. This is used by some Unix network
services (e.g., rsh) to authenticate peer system processes.

Example destination ports:
20–21=FTP, 22=SSH, 23=telnet, 25=SMTP (email), 79=finger, 80=HTTP, 111=Sun RPC,
137–139=NETBIOS (Windows file/printer sharing), 143=IMAP, 161=SNMP, 60xx=X11, etc.
See /etc/services or http://www.iana.org/assignments/port-numbers for more.

26 / 41

http://www.iana.org/assignments/port-numbers


Address spoofing

IP addresses are 32-bit words (IPv6: 128-bit) split into a network and a
host identifier. Destination IP address is used for routing. The IP source
address is provided by the originating host, which can provide wrong
information (“address spoofing”). It is verified during the TCP 3-way
handshake:

S → D : SYNx

D → S : SYNy, ACKx+1

S → D : ACKy+1

Only the third message starts data delivery, therefore data
communication will only proceed after the claimed originator has
confirmed the reception of a TCP sequence number in an ACK message.
From then on, TCP will ignore messages with sequence numbers outside
the confirmation window. In the absence of an eavesdropper, the start
sequence number can act like an authentication nonce.

27 / 41



Examples of TCP/IP vulnerabilities I

I The IP loose source route option allows S to dictate an explicit path
to D and old specifications (RFC 1122) require destination machines
to use the inverse path for the reply, eliminating the authentication
value of the 3-way TCP handshake.

I The connectionless User Datagram Protocol (UDP) has no sequence
numbers and is therefore more vulnerable to address spoofing.

I Implementations still have predictable start sequence numbers,
therefore even without having access to reply packets sent from D
to S, an attacker can

• impersonate S by performing the entire handshake without receiving
the second message (“sequence number attack”)

• disrupt an ongoing communication by inserting data packets with the
right sequence numbers (“session hijacking”)

28 / 41



Examples of TCP/IP vulnerabilities II

I In many older TCP implementations, D allocates a temporary data
record for every half-open connection between the second and third
message of the handshake in a very small buffer. A very small
number of SYN packets with spoofed IP address can exhaust this
buffer and prevent any further TCP communication with D for
considerable time (“SYN flooding”).

I For convenience, network services are usually configured with
alphanumeric names mapped by the Domain Name System (DNS),
which features its own set of vulnerabilities:

• DNS implementations cache query results, and many older versions
even cache unsolicited ones, allowing an attacker to fill the cache
with desired name/address mappings before launching an
impersonation attack.

• Many DNS resolvers are configured to complete name prefixes
automatically, e.g. the hostname n could result in queries
n.cl.cam.ac.uk, n.cam.ac.uk, n.ac.uk, n. So attacker registers
hotmail.com.ac.uk.

29 / 41



Firewalls I

Firewalls are dedicated gateways between intranets/LANs and wide area
networks. All traffic between the “inside” and “outside” world must pass
through the firewall and is checked there for compliance with a local
security policy. Firewalls themselves are supposed to be highly
penetration resistant. They can filter network traffic at various levels of
sophistication:

I A basic firewall function drops or passes TCP/IP packets based on
matches with configured sets of IP addresses and port numbers.
This allows system administrators to control at a single configuration
point which network services are reachable at which host.

I A basic packet filter can distinguish incoming and outgoing TCP
traffic because the opening packet lacks the ACK bit. More
sophisticated filtering requires the implementation of a TCP state
machine, which is beyond the capabilities of most normal routing
hardware.

30 / 41



Firewalls II

I Firewalls should perform plausibility checks on source IP addresses,
e.g. not accept from the outside a packet with an inside source
address and vice versa.

I Good firewalls check for protocol violations to protect vulnerable
implementations on the intranet. Some implement entire application
protocol stacks in order to sanitise the syntax of protocol data units
and suppress unwanted content (e.g., executable email attachments
→ viruses).

I Logging and auditing functions record suspicious activity and
generate alarms. An example are port scans, where a single outside
host sends packets to all hosts of a subnet, a characteristic sign of
someone mapping the network topology or searching systematically
for vulnerable machines.

Firewalls are also used to create encrypted tunnels to the firewalls of
other trusted intranets, in order to set up a virtual private network
(VPN), which provides cryptographic protection for the confidentiality
and authenticity of messages between the intranets in the VPN.

31 / 41



Limits of firewalls

I Once a host on an intranet behind a firewall has been compromised,
the attacker can communicate with this machine by tunnelling traffic
over an open protocol (e.g., HTTPS) and launch further intrusions
unhindered from there.

I Little protection is provided against insider attacks.

I Centrally administered rigid firewall policies severely disrupt the
deployment of new services. The ability to “tunnel” new services
through existing firewalls with fixed policies has become a major
protocol design criterion. Many new protocols (e.g., SOAP) are for
this reason designed to resemble HTTP, which typical firewall
configurations will allow to pass.

Firewalls can be seen as a compromise solution for environments, where
the central administration of the network configuration of each host on
an intranet is not feasible. Much of firewall protection can be obtained
by simply deactivating the relevant network services on end machines
directly.

32 / 41



Security Management and Engineering I

“Is this product/technique/service secure?”

Simple Yes/No answers are often wanted, but typically inappropriate.
Security of an item depends much on the context in which it is used.

Complex systems can provide a very large number of elements and
interactions that are open to abuse. An effective protection can therefore
only be obtained as the result of a systematic planning approach.

33 / 41



Security Management and Engineering II

“No worries, our product is 100% secure. All data is encrypted
with 128-bit keys. It takes billions of years to break these.”

Such statements are abundant in marketing literature. A security
manager should ask:

I What does the mechanism achieve?

I Do we need confidentiality, integrity or availability of exactly this
data?

I Who will generate the keys and how?

I Who will store / have access to the keys?

I Can we lose keys and with them data?

I Will it interfere with other security measures (backup, auditing,
scanning, . . . )?

I Will it introduce new vulnerabilities or can it somehow be used
against us?

I What if it breaks or is broken?

I . . .

34 / 41



Security policy development

Step 1: Security requirements analysis
I Identify assets and their value

I Identify vulnerabilities, threats and risk priorities

I Identify legal and contractual requirements

Step 2: Work out a suitable security policy
The security requirements identified can be complex and may have to be
abstracted first into a high-level security policy, a set of rules that
clarifies which are or are not authorised, required, and prohibited
activities, states and information flows.

Security policy models are techniques for the precise and even formal

definition of such protection goals. They can describe both automatically

enforced policies (e.g., a mandatory access control configuration in an

operating system, a policy description language for a database management

system, etc.) and procedures for employees (e.g., segregation of duties).

35 / 41



Step 3: Security policy document
Once a good understanding exists of what exactly security means for an
organisation and what needs to be protected or enforced, the high-level
security policy should be documented as a reference for anyone involved
in implementing controls. It should clearly lay out the overall objectives,
principles and the underlying threat model that are to guide the choice of
mechanisms in the next step.

Step 4: Selection and implementation of controls
Issues addressed in a typical low-level organisational security policy:

I General (affecting everyone) and specific responsibilities for security

I Names manager who “owns” the overall policy and is in charge of its
continued enforcement, maintenance, review, and evaluation of
effectiveness

I Names individual managers who “own” individual information assets and
are responsible for their day-to-day security

I Reporting responsibilities for security incidents, vulnerabilities, software
malfunctions

I Mechanisms for learning from incidents

36 / 41



I Incentives, disciplinary process, consequences of policy violations

I User training, documentation and revision of procedures

I Personnel security (depending on sensitivity of job)
Background checks, supervision, confidentiality agreement

I Regulation of third-party access

I Physical security
Definition of security perimeters, locating facilities to minimise traffic across perimeters,
alarmed fire doors, physical barriers that penetrate false floors/ceilings, entrance controls,
handling of visitors and public access, visible identification, responsibility to challenge
unescorted strangers, location of backup equipment at safe distance, prohibition of recording
equipment, redundant power supplies, access to cabling, authorisation procedure for removal
of property, clear desk/screen policy, etc.

I Segregation of duties
Avoid that a single person can abuse authority without detection (e.g., different people must
raise purchase order and confirm delivery of goods, croupier vs. cashier in casino)

I Audit trails
What activities are logged, how are log files protected from manipulation

I Separation of development and operational facilities

I Protection against unauthorised and malicious software

37 / 41



I Organising backup and rehearsing restoration

I File/document access control, sensitivity labeling of documents and media

I Disposal of media
Zeroise, degauss, reformat, or shred and destroy storage media, paper, carbon paper, printer
ribbons, etc. before discarding it.

I Network and software configuration management

I Line and file encryption, authentication, key and password management

I Duress alarms, terminal timeouts, clock synchronisation, . . .

For more detailed check lists and guidelines for writing informal security policy
documents along these lines, see for example

I British Standard 7799 “Code of practice for information security
management”

I German Information Security Agency’s “IT Baseline Protection Manual”
http://www.bsi.bund.de/english/gshb/manual/

I US DoD National Computer Security Center Rainbow Series, for military
policy guidelines
http://en.wikipedia.org/wiki/Rainbow_Series

38 / 41

http://www.bsi.bund.de/english/gshb/manual/
http://en.wikipedia.org/wiki/Rainbow_Series


UK Computer Misuse Act 1990

I Knowingly causing a computer to perform a function with the intent
to access without authorisation any program or data held on it ⇒ up
to 6 months in prison and/or a fine

I Doing so to further a more serious crime
⇒ up to 5 years in prison and/or a fine

I Knowingly causing an unauthorised modification of the contents of
any computer to impair its operation or hinder access to its
programs or data ⇒ up to 5 years in prison and/or a fine

The intent does not have to be directed against any particular computer,
program or data. In other words, starting automated and self-replicating
tools (viruses, worms, etc.) that randomly pick where they attack is
covered by the Act as well. Denial-of-service attacks in the form of
overloading public services are not yet covered explicitly.
http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm

39 / 41

http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm


UK Data Protection Act 1998

Anyone processing personal data must comply with the eight principles of
data protection, which require that data must be

1 fairly and lawfully processed
Person’s consent or organisation’s legitimate interest needed, no deception about purpose,
sensitive data (ethnic origin, political opinions, religion, trade union membership, health, sex
life, offences) may only be processed with consent or for medical research or equal
opportunity monitoring, etc.

2 processed for limited purposes
In general, personal data can’t be used without consent for purposes other than those for
which it was originally collected.

3 adequate, relevant and not excessive

4 accurate

5 not kept longer than necessary

6 processed in accordance with the data subject’s rights
Persons have the right to access data about them, unless this would breach another person’s
privacy, and can request that inaccurate data is corrected.

7 secure

8 not transferred to countries without adequate protection
This means, no transfer outside the European Free Trade Area. Special “safe harbour”
contract arrangements with data controllers in the US are possible.

40 / 41



Some terminology:

“Personal data” is any data that relates to a living identifiable individual
(“data subject”), both digitally stored and on paper.

A “data controller” is the person or organisation that controls the
purpose and way in which personal data is processed.

http://www.hmso.gov.uk/acts/acts1998/19980029.htm
http://www.ico.gov.uk/
http://www.admin.cam.ac.uk/univ/dpa/

41 / 41

http://www.hmso.gov.uk/acts/acts1998/19980029.htm
http://www.ico.gov.uk/
http://www.admin.cam.ac.uk/univ/dpa/

	Cryptography
	Secure hash functions
	Applications of secure hash functions
	Secret sharing
	Public-key cryptography
	Software tools

	Network security
	Security management and engineering
	Legal requirements


