
16/10/2013	

1	

Crypto protocols	

ACS R209: Computer Security – 	

Principles and Foundations 	

Ross Anderson	

Security Protocols	

•  Security protocols are the intellectual core
of security engineering	

•  They are where cryptography and system
mechanisms meet	

•  They allow trust to be taken from where it
exists to where it’s needed	

•  But they are much older then computers…	

16/10/2013	

2	

Real-world protocol	

•  Ordering wine in a restaurant	

– Sommelier presents wine list to host 	

– Host chooses wine; sommelier fetches it	

– Host samples wine; then it’s served to guests	

•  Security properties?	

Real-world protocol	

•  Ordering wine in a restaurant	

– Sommelier presents wine list to host 	

– Host chooses wine; sommelier fetches it	

– Host samples wine; then it’s served to guests	

•  Security properties	

– Confidentiality – of price from guests	

–  Integrity – can’t substitute a cheaper wine	

– Non-repudiation – host can’t falsely complain	

16/10/2013	

3	

Car unlocking protocols	

•  Principals are the engine controller E and the car key

transponder T	

•  Static (T → E: KT)	

•  Non-interactive	

	

T → E: T, {T,N}KT	

•  Interactive	

	

E → T: N	

	

T → E: {T,N }KT	

•  N is a ‘nonce’ for ‘number used once’. It can be a serial
number, a random number or a timestamp	

Two-factor authentication	

S → U: N	

U → P: N, PIN	

P → U: {N, PIN}KP	

16/10/2013	

4	

Key management protocols	

•  Suppose Alice and Bob each share a key
with Sam, and want to communicate?	

– Alice calls Sam and asks for a key for Bob	

– Sam sends Alice a key encrypted in a blob only

she can read, and the same key also encrypted
in another blob only Bob can read	

– Alice calls Bob and sends him the second blob	

•  How can they check the protocol’s fresh?	

Needham-Schroder	

•  1978: uses ‘nonces’ rather than timestamps	

A → S: A, B, NA	

S → A: {NA, B, KAB,{KAB, A} KBS}KAS	

A → B: {KAB, A}KBS	

B → A: {NB}KAB	

A → B: {NB - 1}KAB	

•  The bug, and the controversy…	

16/10/2013	

5	

Identify Friend or Foe (IFF)	

•  Basic idea: fighter challenges bomber	

F → B: N	

B → F: {N}K	

	

•  What can go wrong?	

Identify Friend or Foe (IFF)	

•  Basic idea: fighter challenges bomber	

F → B: N	

B → F: {N}K	

•  What if the bomber reflects the challenge back at
the fighter’s wingman?	

F → B: N	

B → F: N	

F → B: {N}K	

B → F: {N}K	

16/10/2013	

6	

IFF (2)	

 	

A normal EMV transaction	

16/10/2013	

7	

The ‘No-PIN’ attack (2010)	

Fixing the ‘No PIN’ attack	

•  In theory: might block at terminal, acquirer, issuer	

•  In practice: may have to be the issuer (as with

terminal tampering, acquirer incentives are poor)	

•  Barclays introduced a fix July 2010; removed Dec

2010 (too many false positives?); banks asked for
student thesis to be taken down from web instead	

•  Real problem: EMV spec now far too complex	

•  With 100+ vendors, 20,000 banks, millions of

merchants … everyone passes the buck (or tries to
sell ECC…)	

16/10/2013	

8	

Hardware Security Modules

API Attacks	

•  A typical HSM has 50–500 API calls!	

•  We found that evil combinations of API calls, or API calls

with wicked data, can very often break the security policy	

•  E.g. HSM transaction defined by VISA for EMV for

encrypted messaging between a bank and a chip card	

•  Send key from HSM to card or other HSM as {text | key}

– where text is variable-length	

•  Attack – a bank programmer can encrypt {text | 00}, {text |

01}, etc to get first byte of key, and so on	

•  API vulnerabilities can turn up in multiple products, so are

important to find – but are still hard to find formally 	

16/10/2013	

9	

Public Key Crypto Revision	

•  Digital signatures: computed using a private
signing key on hashed data	

•  Can be verified with corresponding public
verification key	

•  Can’t work out signing key from verification key	

•  Typical algorithms: DSA, elliptic curve DSA	

•  We’ll write sigA{X} for the hashed data X signed

using A’s private signing key	

Public Key Crypto Revision (2)	

•  Public key encryption lets you encrypt data
using a user’s public encryption key	

•  She can decrypt it using her private
decryption key	

•  Typical algorithms Diffie-Hellman, RSA	

•  We’ll write {X}A 	

•  Big problem: knowing whose key it is!	

16/10/2013	

10	

PKC Revision – Diffie-Hellman	

•  Diffie-Hellman: underlying metaphor is that

Anthony sends a box with a message to Brutus	

•  But the messenger’s loyal to Caesar, so Anthony

puts a padlock on it	

•  Brutus adds his own padlock and sends it back to

Anthony	

•  Anthony removes his padlock and sends it to

Brutus who can now unlock it	

•  Is this secure?	

PKC Revision – Diffie-Hellman (2)	

•  Electronic implementation:	

	

 	

A → B: 	

MrA	

	

 	

B → A: 	

MrArB	

	

 	

A → B: 	

MrB	

•  But encoding messages as group elements can be

tiresome so instead Diffie-Hellman goes:	

	

 	

 A → B: 	

grA	

	

 	

B → A: 	

grB	

	

 	

A → B: 	

{M}grArB	

16/10/2013	

11	

Public-key Needham-Schroeder	

•  Proposed in 1978:	

A → B: {NA, A}KB	

B → A: {NA, NB}KA	

A → B: {NB}KB	

•  The idea is that they then use NA⊕NB as a
shared key	

•  Is this OK?	

Public-key Needham-Schroeder (2)	

•  Attack found eighteen years later, in 1996:	

A → C: {NA, A}KC	

C → B: 	

 	

 	

{NA, A}KB	

B → C: 	

 	

 	

 	

 	

{NA, NB}KA	

C → A: 	

 	

 	

{NA, NB}KA	

A → C: {NB}KC	

C → B: 	

 	

 	

{NB}KB	

•  Fix: explicitness. Put all names in all messages	

16/10/2013	

12	

Public Key Certification	

•  One way of linking public keys to principals is for

the sysadmin to physically install them on
machines (common with SSH, IPSEC)	

•  Another is to set up keys, then exchange a short
string out of band to check you’re speaking to the
right principal (STU-II, Bluetooth simple pairing)	

•  Another is certificates. Sam signs Alice’s public
key (and/or signature verification key) 	

CA = sigS{TS,L,A,KA,VA}	

•  But this is still far from idiot-proof…	

The Denning-Sacco Protocol	

•  In 1982, Denning and Sacco pointed out the
revocation problem with Needham-
Schroder and argued that public key should
be used instead	

A → S: A, B	

S → A: CA, CB	

A → B: CA, CB, {sigA{TA, KAB}}KB 	

•  What’s wrong?	

16/10/2013	

13	

The Denning-Sacco Protocol (2)	

•  Twelve years later, Abadi and Needham noticed
that Bob can now masquerade as Alice to anyone
in the world!	

A → S: A, B	

S → A: CA, CB	

A → B: CA, CB, {sigA{TA, KAB}}KB 	

B → S: B, C	

S → B: CB, CC	

B → C: CA, CC, {sigA{TA, KAB}}KC	

Public Key Protocol Problems	

•  It’s also very easy to set up keys with the wrong
people – man-in-the-middle attacks get more
pervasive. Assumptions are slippery to pin down	

•  Technical stuff too – if the math is exposed, an
attacker may use it against you! 	

•  So data being encrypted (or signed) must be
suitably packaged	

•  Many other traps, some extremely obscure…	

16/10/2013	

14	

TLS	

•  Formerly SSL, became TLS after many bugs

fixed:	

C → S: C, C#, NC ‘client hello’	

S → C: S, S#, NS CS ‘server hello’	

C → S: {k0}KS 	

 	

‘k0 = pre-master secret’	

C → S: {finished, MACK1(everything to date)}	

S → C: {finished, MACK2(everything to date)}	

K1, K2 hashed from ‘master secret’ K1 = h(k0, NC , NS)	

•  Formally verified to ‘work’ but still often used
inappropriately (more later…)	

TLS (2)	

•  Why doesn’t TLS stop phishing?	

– Noticing an ‘absent’ padlock is hard	

– Understanding URLs is hard	

– Websites train users in bad practice	

– …	

•  In short, TLS as used in e-commerce dumps
compliance costs on users, who can’t cope	

•  There are solid uses for it though	

16/10/2013	

15	

Chosen protocol attack	

•  Suppose that we had a protocol for users to
sign hashes of payment messages (such a
protocol was proposed in 1990s):	

C → M: order	

M → C: X [= hash(order, amount, date, …)]	

C → M: sigK{X}	

•  How might this be attacked?	

Chosen protocol attack (2)	

 The Mafia demands you sign a random
challenge to prove your age for porn sites!	

