
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 26 November 2013

Lecture 8

 Transactional memory

 HTM

 STM

 Programming models for TM

 Perspectives on TM research

Updating memory, one location at a time

 Theoretical result (informally): CAS is a strong enough
primitive to build a wait-free anything

 “Consensus hierarchy”:

 For a given primitive, what is the max number of processes (n)
between which it can solve wait-free consensus?

 Read/write memory locations: n=1

 FIFO queues: n=2

 Swap, TAS, FADD, ...: n=2

 CAS: n unbounded

 (=> fundamental limitation to the primitives on IBM 360,
NYU Ultracomputer, early SPARC, ...)

3

Updating memory, one location at a time

 Practical observation: building with CAS is difficult, and
incurs overheads not present in lock-based algorithms

 Two ways to look at this:

4

Each individual read, write, CAS, must
maintain the data structure’s invariants.
Typically, a CAS at the linearization point
must update the logical state of the data
structure by touching just one word.

Each individual read, write, CAS, must
maintain the data structure’s invariants.
Typically, a CAS at the linearization point
must update the logical state of the data
structure by touching just one word.

Updating memory, one location at a time

 Practical observation: building with CAS is difficult, and
incurs overheads not present in lock-based algorithms

 Two ways to look at this:

5

Suppose a thread is pre-empted just
before making a write or CAS. The OS
can re-schedule the thread at any time.
The application better make sure it is safe
to do so!

 => provide support for accessing multiple locations as a
single atomic step

Transactional memory

 Perform a series of reads / writes / computation

 The TM implementation is responsible for making it appear as
a single atomic action

 More than just “multi-word CAS”: can compute based on the
values read, and decide where/what to write

 Like a database transaction:

 A – Atomicity (either all the accesses appear to occur, or none)

 C – Consistency (invariants restored between transactions,
not at each step within one)

 I – Isolation (between transactions on concurrent threads)

 (D – Durability, people argue about what the terminology
means here…)

6

Logical vs physical deletion

H 10 30 T

20

10 30

30 30X

30 20

7

 Use a ‘spare’ bit to indicate logically deleted nodes:

RECAP

Insert(20)

Delete(10)

Deletion with TM

H 10 30 T

20

10 30 30 NULL

30 20

8

Insert(20)

Delete(10)

No need for a
reserved bit:

just use NULL

No need to handle partial
failures (either both

locations are
updated, or none is)

If complete operations
are done in transactions,

then memory
management simpler

Overview :implementation techniques

 Software TM

 Build from CAS (or whatever the hardware provides)

 Use techniques such as locking, version numbers, internally

 Implement the complexity once, rather than per data
structure

 Hardware TM

 Typically, build on the cache coherence protocol

 Cache already tracks which lines are in which modes

 Track if a line is “stolen” during a transaction’s execution

 Sand-box the transaction’s behavior until it commits

9

TM in hardware

HTM interfaces

 Focus here is on the ISA (programming API) rather than
micro-architecture (implementation)

 Bounded:
 Bound on the number of locations a tx may access

 “up to 2”, “up to 4”, ...

 Best effort:
 Any transaction may fail (indeed, some transactions may

always fail, even in isolation, for reasons hard to explain via
the ISA)

 Fairness:
 Is there any guarantee about how different threads make

progress with their transactions?

 (How does this compare with read, write, or CAS?)

11

Rock interface:

 chkpt <fail_addr>

 commit

 abort

 Best-effort

 Reads must fit in L1 (NB: limited associativity, as well as size)

 Writes must fit in the store buffer

 Some instructions are prohibited

 Speculation in the h/w can lead to surprises...

12

Intel TSX (“Haswell”) interface

 Restricted transactional memory mode:

 XBEGIN <fail_addr>

 XEND

 XABORT

 Explicit instructions to start/commit speculation

 No guarantee for bounded size transactions

 Nesting (flattening into outermost tx)

 Broad support for most of user-mode ISA

13

Intel TSX (“Haswell”) interface

 Hardware lock-elision mode:

 XACQUIRE *

 XRELEASE *

 Prefixes added to instructions that acquire/release locks

 Check the lock is available

 If so, speculatively run the critical section, monitoring the
lock’s address for writes

 Get to XRELEASE without conflict? Commit the updates,
stop speculating

14

Basic mutex

15

Basic mutex with HLE

16

CAS fails: go to
slow path

CAS succeeds: add lock to
read set, start monitoring

reads/writes

If we read from the lock: see 1. If
others read: see 0. If others

speculatively acquire: OK. If others
actually write: abort.

Storing 0 back without
intervening writes to flag:

finish speculation

TM in software

Implementation techniques
 Direct-update STM

 Allow transactions to make updates in place in the heap
 Avoids reads needing to search the log to see earlier writes that the

transaction has made
 Makes successful commit operations faster at the cost of extra work

on contention or when a transaction aborts

 Compiler integration
 Decompose the transactional memory operations into primitives
 Expose the primitives to compiler optimization (e.g. to hoist

concurrency control operations out of a loop)

 Runtime system integration
 Integration with the garbage collector or runtime system

components to scale to atomic blocks containing 100M memory
accesses

 Memory management system used to detect conflicts between
transactional and non-transactional accesses

18

Bartok-STM

 Use per-object meta-data (“TMWs”)

 Each TMW is either:

 Locked, holding a pointer to the transaction that has the
object open for update

 Available, holding a version number indicating how many
times the object has been locked

 Writers eagerly lock TMWs to gain access to the object,
using eager version management

 Maintain an undo log in case of roll-back

 Readers log the version numbers they see and perform lazy
conflict detection at commit time

Non-blocking data structures and transactional memory 19

Example: uncontended swap
a:

v150

1000

v250

2000

b:

Non-blocking data structures and transactional memory 20

Example: uncontended swap
a:

v150

1000

v250

2000

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 21

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 22

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150
b: v250

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 23

Example: uncontended swap
a:

Tx1

2000

v250

2000

a: v150
b: v250

a: v150

a.val = 1000

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 24

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 25

Commit in Bartok-STM

Iterate over
the read set:

Current TMW
matches logged

version?

Current TMW
shows we locked

the object?

Abort

Logged TMW
matches version in

our write set?

Abort

Yes

Yes Yes

No

No No

OK so far

OK so far

Non-blocking data structures and transactional memory 26

Correctness sketch

time

Open obj1 for read Open obj2
for update

Commit: validate
obj1 version

Commit:
unlock obj2

Lock prevents concurrent updates

Validation checks no updates

Tx appears atomic after
last “Open” and before

first validation step

Non-blocking data structures and transactional memory 27

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

Tx1 Objects read

Objects updated

Values

overwritten

“We locked the
object...”

“...and no-one
else got there

first!”

Non-blocking data structures and transactional memory 28

Example: uncontended swap
a:

v151

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 29

Example: uncontended swap
a:

v151

2000

v251

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

Tx1 Objects read

Values

overwritten

Non-blocking data structures and transactional memory 30

Objects updated

Example: uncontended swap
a:

v151

2000

v251

1000

b:

Non-blocking data structures and transactional memory 31

Tx-tx interaction in Bartok-STM

 Read-read: no problem, both readers see the same version
number and verify it at commit time

 Read-write: reader sees that the writer has the object
locked. Reader always defers to writer

 Write-write: competition for lock serializes writers (drop
locks, then spin to avoid deadlock)

Non-blocking data structures and transactional memory 32

 Gold standard:

 During execution a transaction runs against a consistent view
of memory

 Won’t be “tricked” into looping, etc.

 “Opacity”

 What are the advantages / disadvantages when compared
with an implementation giving weaker guarantees?

Non-blocking data structures and transactional memory 33

Taxonomy: consistency during tx

 We need some way to manage the tentative updates that a
transaction is making

 Where are they stored?

 How does the implementation find them (so a transaction’s
read sees an earlier write)?

 Lazy versioning: only make “real” updates when a
transaction commits

 Eager versioning: make updates as a transaction runs, roll
them back on abort

 What are the advantages, disadvantages?

Non-blocking data structures and transactional memory 34

Taxonomy: lazy/eager versioning

 We need to detect when two transactions conflict with one
another

 Lazy conflict detection: detect conflicts at commit time

 Eager conflict detection: detect conflicts as transactions
run

 Again, what are the advantages, disadvantages?

Non-blocking data structures and transactional memory 35

Taxonomy: lazy/eager conflict detection

Taxonomy: word/object based

 What granularity are conflicts detected at?

 Object-based:

 Access to programmer-defined structures (e.g. objects)

 Word-based:

 Access to words (or sets of words, e.g. cache lines)

 Possibly after mapping under a hash function

 What are the advantages and disadvantages of these
approaches?

Non-blocking data structures and transactional memory 36

Bartok-STM

 Designed to work well on low-contention workloads

 Eager version management to reduce commit costs

 Eager locking to support eager version management

 Primitives do not guarantee that transactions see a
consistent view of the heap while running

 Can be sandboxed in managed code...

 ...harder in native code

Non-blocking data structures and transactional memory 37

Performance figures depend on...

 Workload : What do the atomic blocks do? How long is spent inside
them?

 Baseline implementation: Mature existing compiler, or prototype?

 Intended semantics: Support static separation? Violation freedom
(TDRF)?

 STM implementation: In-place updates, deferred updates, eager/lazy
conflict detection, visible/invisible readers?

 STM-specific optimizations: e.g. to remove or downgrade redundant TM
operations

 Integration: e.g. dynamically between the GC and the STM, or inlining of
STM functions during compilation

 Implementation effort: low-level perf tweaks, tuning, etc.

 Hardware: e.g. performance of CAS and memory system

Non-blocking data structures and transactional memory 38

Labyrinth

 STAMP v0.9.10

 256x256x3 grid

 Routing 256 paths

 Almost all execution inside atomic
blocks

 Atomic blocks can attempt 100K+
updates

 C# version derived from original C

 Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

 Overhead results with Core2 Duo
running Windows Vista

s1

e1

“STAMP: Stanford Transactional Applications for Multi-Processing”
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

Non-blocking data structures and transactional memory 39

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Sequential overhead

STM implementation supporting static separation
In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word

Update: CAS on per-object metadata word
Update: log value being overwritten

Non-blocking data structures and transactional memory 40

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Non-blocking data structures and transactional memory 41

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Non-blocking data structures and transactional memory 42

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Inline optimized filter operations

Re-use table_base between filter operations
Avoids caller save/restore on filter hits

mov eax <- obj_addr
and eax <- eax, 0xffc
mov ebx <- [table_base + eax]
cmp ebx, obj_addr

Non-blocking data structures and transactional memory 43

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

1.0 = wall-clock execution time
of sequential code without

concurrency control

Non-blocking data structures and transactional memory 44

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

Non-blocking data structures and transactional memory 45

TM programming

models

What we want

Hardware

Concurrency primitives

Library Library Library

Library

Library
Library

Library

Libraries build layered
concurrency
abstractions

47

Library

Locks and condition
variables
(a) are hard to use and
(b) do not compose

Hardware

What we have

48

Atomic blocks

Atomic blocks built over transactional memory.
In Haskell: 3 primitives: atomic, retry, orElse

Library Library Library

Library

Library
Library

Library

Hardware

49

Atomic memory transactions

 To a first approximation, just write the sequential code, and
wrap atomic around it

 All-or-nothing semantics: Atomic commit

 Atomic block executes in Isolation

 Cannot deadlock (there are no locks!)

 Atomicity makes error recovery easy
(e.g. exception thrown inside the PopLeft code)

Like database
transactions

ACID

50

Atomic blocks compose (locks do not)

 Guarantees to get two consecutive items

 PopLeft() is unchanged

 Cannot be achieved with locks (except by
breaking the PopLeft abstraction)

Composition
is THE way we

build big
programs
that work

51

 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)”

 No lost wake-ups

 No consequential change to GetTwo(), even though GetTwo
must wait for there to be two items in the queue

Blocking: how does PopLeft wait for data?

52

 do {...this...} orelse {...that...} tries to run “this”

 If “this” retries, it runs “that” instead

 If both retry, the do-block retries. GetEither() will thereby wait
for there to be an item in either queue

Q1 Q2

R

Choice: waiting for either of two queues

53

Programming with atomic blocks
With locks, you think about:

 Which lock protects which data? What data can be mutated
when by other threads? Which condition variables must be
notified when?

 None of this is explicit in the source code

With atomic blocks you think about

 What are the invariants (e.g. the tree is balanced)?

 Each atomic block maintains the invariants

 Purely sequential reasoning within a block, which is dramatically
easier

 Much easier setting for static analysis tools

54

Compilation

Source
code

Bytecode
Native
code

Source to bytecode compiler;
typically “csc” in C#, “javac” for

Java

Bytecode-to-native compiler;
JIT or traditional compilation

Non-blocking data structures and transactional memory 55

Atomic blocks

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 TxStart();
 QElem e = new QElem(item);
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!TxCommit());
 }

 ...
}

Non-blocking data structures and transactional memory 56

Boilerplate around transactions

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 va = p.a;
 vb = p.b;
 p.a = vb;
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Keep running the
atomic block in a

fresh tx each time

Commit (on
normal or exn exit)

Commit fails by raising
a TxInvalid exception;

re-execute

(I’m using source code
examples for clarity; in
reality this would be in
the compiler’s internal

intermediate code)

Non-blocking data structures and transactional memory 57

 Naïve expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 TxWrite(tx, &va, TxRead(tx, &p.a));
 TxWrite(tx, &vb, TxRead(tx, &p.b));
 TxWrite(tx, &p.a, TxRead(tx, &vb));
 TxWrite(tx, &p.b, TxRead(tx, &va));
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 58

What are the problems here with STM?

 Using the STM for thread-private local variables

 Repeatedly mapping from addresses to concurrency
control info

 Duplicating concurrency control work if it’s implemented at
a per-object granularity

Non-blocking data structures and transactional memory 59

Decomposed STM primitive API

 OpenForRead(tx, obj)

 OpenForRead(tx, addr)

 OpenForUpdate(tx, obj)

 OpenForUpdate(tx, addr)

 LogForUndo(tx, addr)

Indicate intent to read from
an object or from a given

address

Indicate intent to update
a specific address (&

optional size)

Non-blocking data structures and transactional memory 60

Using the decomposed API

x = p.a;
OpenForRead(tx, p);
x = p.a;

p.b = y;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = y;

Non-blocking data structures and transactional memory 61

...
OpenForUpdate(tx, p);
OpenForRead(tx, p);
va = p.a;
OpenForRead(tx, p);
Vb = p.b;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.a);
p.a = vb;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = va;
...

Second OpenForRead
made unnecessary by first

Second OpenForUpdate
made unnecessary by first

Always need update
access: get it first

Non-blocking data structures and transactional memory 62

Implementation using decomposed API

 Improved expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 OpenForUpdate(tx, p);
 va = p.a;
 vb = p.b;
 LogForUndo(tx, &p.a);
 p.a = vb;
 LogForUndo(tx, &p.b);
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 63

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 p.a = 10;
 p.b = i;
 }
}

Original (contrived) source code

Non-blocking data structures and transactional memory 64

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 p.a = 10;
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Expanded with decomposed API operations

Non-blocking data structures and transactional memory 65

Keeping optimizations safe

void Clear_tx(Pair p) {
 p.a = 10;
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Hoisting loop-invariant code

Non-blocking data structures and transactional memory 66

Keeping optimizations safe

void Clear_tx(Pair p) {
for (int i = 0; i < 10; i ++) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 tmp3 = LogForUndo(tx, &p.b) <tmp1>;
 p.b = i <tmp3>;
 }
}

Introduce dependencies

Non-blocking data structures and transactional memory 67

Keeping optimizations safe

void Clear_tx(Pair p) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 tmp3 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 for (int i = 0; i < 10; i ++) {
 p.b = i <tmp3>;
 }
}

Transformations must respect dependencies

Non-blocking data structures and transactional memory 68

Are we done?

 Blocking operations (retry / orelse)

 Local variables

 By-ref parameters

 Method calls

 Sandboxing zombie transactions

 IO and other native operations

Non-blocking data structures and transactional memory 69

TM perspectives

Granularity

Distributed, large-scale
atomic actions

Composable shared
memory data structures

“Leaf” shared memory
data structures

General purpose atomic
actions in a program

71

Programming abstraction

Lock elision

The program’s semantics is
defined using locks. TM is used
as an implementation
mechanism.

Speculation

Semantics defined by speculative
execution, commit, etc. (either
implicitly, or explicitly)

Atomic

Semantics defined by atomic
execution (e.g. “atomic { X }”).
Speculation, if used, is
abstracted by the
implementation.

Non-blocking data structures and transactional memory 72

Purpose

Makes software easier
to develop /

verify /
maintain / …

Faster: better than
alternatives,

irrespective of
complexity

Non-blocking data structures and transactional memory 73

Design points that I like

HW DCAS / 3-CAS / …
Granularity: leaf data structures

Abstraction: atomic multi-word CAS
Purpose: faster

HTM with limited guarantees (~ASF)
Granularity: leaf data structures
Abstraction: short transactions

Purpose: faster

Static separation (e.g., STM-Haskell)
Granularity: composable data structures

Abstraction: atomic actions
Purpose: easier, decent perf

Non-blocking data structures and transactional memory 74

Design points I am sceptical about

Speculative lock elision on general-purpose s/w

“atomic” blocks over normal data in a high-level language
(C#/Java)

(prove me wrong, I would like either of these to work!)

Non-blocking data structures and transactional memory 75

Correctness

Ease to
write

What do we care about?

76

When can it
be used?

How well
does it scale?

How fast is it?

