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Lecture 8 

 Transactional memory 

 HTM 

 STM 

 Programming models for TM 

 Perspectives on TM research 



Updating memory, one location at a time 

 Theoretical result (informally): CAS is a strong enough 
primitive to build a wait-free anything 

 “Consensus hierarchy”: 

 For a given primitive, what is the max number of processes (n) 
between which it can solve wait-free consensus? 

 Read/write memory locations: n=1 

 FIFO queues: n=2 

 Swap, TAS, FADD, ...: n=2 

 CAS: n unbounded 

 (=> fundamental limitation to the primitives on IBM 360, 
NYU Ultracomputer, early SPARC, ...) 
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Updating memory, one location at a time 

 Practical observation: building with CAS is difficult, and 
incurs overheads not present in lock-based algorithms 

 Two ways to look at this: 
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Each individual read, write, CAS, must 
maintain the data structure’s invariants.  
Typically, a CAS at the linearization point 
must update the logical state of the data 
structure by touching just one word. 



Each individual read, write, CAS, must 
maintain the data structure’s invariants.  
Typically, a CAS at the linearization point 
must update the logical state of the data 
structure by touching just one word. 

Updating memory, one location at a time 

 Practical observation: building with CAS is difficult, and 
incurs overheads not present in lock-based algorithms 

 Two ways to look at this: 
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Suppose a thread is pre-empted just 
before making a write or CAS.  The OS 
can re-schedule the thread at any time.  
The application better make sure it is safe 
to do so! 

 => provide support for accessing multiple locations as a 
single atomic step  



Transactional memory 

 Perform a series of reads / writes / computation 

 The TM implementation is responsible for making it appear as 
a single atomic action 

 More than just “multi-word CAS”: can compute based on the 
values read, and decide where/what to write 

 Like a database transaction: 

 A – Atomicity (either all the accesses appear to occur, or none) 

 C – Consistency (invariants restored between transactions, 
not at each step within one) 

 I – Isolation (between transactions on concurrent threads) 

 (D – Durability, people argue about what the terminology 
means here…) 
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Logical vs physical deletion 
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 Use a ‘spare’ bit to indicate logically deleted nodes: 

RECAP 

Insert(20) 

Delete(10) 



Deletion with TM 
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Insert(20) 

Delete(10) 

No need for a 
reserved bit:  

just use NULL 

No need to handle partial 
failures (either both 

locations are  
updated, or none is) 

If complete operations 
are done in transactions, 

then memory 
management simpler 



Overview :implementation techniques
  
 Software TM 

 Build from CAS (or whatever the hardware provides) 

 Use techniques such as locking, version numbers, internally 

 Implement the complexity once, rather than per data 
structure 

 Hardware TM 

 Typically, build on the cache coherence protocol 

 Cache already tracks which lines are in which modes 

 Track if a line is “stolen” during a transaction’s execution 

 Sand-box the transaction’s behavior until it commits 

 

9 



TM in hardware 



HTM interfaces 

 Focus here is on the ISA (programming API) rather than 
micro-architecture (implementation) 

 Bounded: 
 Bound on the number of locations a tx may access 

 “up to 2”, “up to 4”, ... 

 Best effort: 
 Any transaction may fail (indeed, some transactions may 

always fail, even in isolation, for reasons hard to explain via 
the ISA) 

 Fairness: 
 Is there any guarantee about how different threads make 

progress with their transactions? 

 (How does this compare with read, write, or CAS?) 
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Rock interface: 

 chkpt <fail_addr> 

 commit 

 abort 
 

 Best-effort 

 Reads must fit in L1 (NB: limited associativity, as well as size) 

 Writes must fit in the store buffer 

 Some instructions are prohibited  

 Speculation in the h/w can lead to surprises... 
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Intel TSX (“Haswell”) interface 

 Restricted transactional memory mode: 
 

 XBEGIN <fail_addr> 

 XEND 

 XABORT 
 

 Explicit instructions to start/commit speculation 

 No guarantee for bounded size transactions 

 Nesting (flattening into outermost tx) 

 Broad support for most of user-mode ISA 
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Intel TSX (“Haswell”) interface 

 Hardware lock-elision mode: 
 

 XACQUIRE * 

 XRELEASE * 
 

 Prefixes added to instructions that acquire/release locks 

 Check the lock is available 

 If so, speculatively run the critical section, monitoring the 
lock’s address for writes 

 Get to XRELEASE without conflict?  Commit the updates, 
stop speculating 
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Basic mutex  
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Basic mutex with HLE 
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CAS fails: go to 
slow path 

CAS succeeds: add lock to 
read set, start monitoring 

reads/writes 

If we read from the lock: see 1.  If 
others read: see 0.  If others 

speculatively acquire: OK.  If others 
actually write: abort. 

Storing 0 back without 
intervening writes to flag: 

finish speculation 



TM in software 



Implementation techniques 
 Direct-update STM 

 Allow transactions to make updates in place in the heap 
 Avoids reads needing to search the log to see earlier writes that the 

transaction has made 
 Makes successful commit operations faster at the cost of extra work 

on contention or when a transaction aborts 

 Compiler integration 
 Decompose the transactional memory operations into primitives 
 Expose the primitives to compiler optimization (e.g. to hoist 

concurrency control operations out of a loop) 

 Runtime system integration 
 Integration with the garbage collector or runtime system 

components to scale to atomic blocks containing 100M memory 
accesses 

 Memory management system used to detect conflicts between 
transactional and non-transactional accesses 
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Bartok-STM 

 Use per-object meta-data (“TMWs”) 

 Each TMW is either: 

 Locked, holding a pointer to the transaction that has the 
object open for update 

 Available, holding a version number indicating how many 
times the object has been locked 

 Writers eagerly lock TMWs to gain access to the object, 
using eager version management 

 Maintain an undo log in case of roll-back 

 Readers log the version numbers they see and perform lazy 
conflict detection at commit time 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

b: 
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Example: uncontended swap 
a: 

v150 
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v250 

2000 

b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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a: v150 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

a: v150 
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b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

Tx1 

2000 

v250 

2000 

a: v150 
b: v250 

a: v150 

a.val = 1000 

b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Commit in Bartok-STM 

Iterate over 
the read set: 

Current TMW 
matches logged 

version? 

Current TMW 
shows we locked 

the object? 

Abort 

Logged TMW 
matches version in 

our write set? 

Abort 

Yes 

Yes Yes 

No 

No No 

OK so far 

OK so far 
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Correctness sketch 

time 

Open obj1 for read Open obj2 
for update 

Commit: validate 
obj1 version 

Commit: 
unlock obj2 

Lock prevents concurrent updates 

Validation checks no updates 

Tx appears atomic after 
last “Open” and before 

first validation step 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 

“We locked the 
object...” 

“...and no-one 
else got there 

first!” 

Non-blocking data structures and transactional memory 28 



Example: uncontended swap 
a: 

v151 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

Tx1 Objects read 

Values 

overwritten 
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Objects updated 



Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

b: 
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Tx-tx interaction in Bartok-STM 

 Read-read: no problem, both readers see the same version 
number and verify it at commit time 

 Read-write: reader sees that the writer has the object 
locked.  Reader always defers to writer 

 Write-write: competition for lock serializes writers (drop 
locks, then spin to avoid deadlock) 
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 Gold standard: 

 During execution a transaction runs against a consistent view 
of memory 

 Won’t be “tricked” into looping, etc. 

 “Opacity”  

 What are the advantages / disadvantages when compared 
with an implementation giving weaker guarantees? 
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Taxonomy: consistency during tx 



 We need some way to manage the tentative updates that a 
transaction is making  

 Where are they stored? 

 How does the implementation find them (so a transaction’s 
read sees an earlier write)? 

 Lazy versioning: only make “real” updates when a 
transaction commits 

 Eager versioning: make updates as a transaction runs, roll 
them back on abort 

 What are the advantages, disadvantages? 
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Taxonomy: lazy/eager versioning 



 We need to detect when two transactions conflict with one 
another 

 Lazy conflict detection: detect conflicts at commit time 

 Eager conflict detection: detect conflicts as transactions 
run 

 Again, what are the advantages, disadvantages? 
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Taxonomy: lazy/eager conflict detection 



Taxonomy: word/object based 

 What granularity are conflicts detected at? 

 Object-based: 

 Access to programmer-defined structures (e.g. objects) 

 Word-based: 

 Access to words (or sets of words, e.g. cache lines) 

 Possibly after mapping under a hash function 

 What are the advantages and disadvantages of these 
approaches? 
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Bartok-STM 

 Designed to work well on low-contention workloads 

 Eager version management to reduce commit costs 

 Eager locking to support eager version management 

 Primitives do not guarantee that transactions see a 
consistent view of the heap while running 

 Can be sandboxed in managed code... 

 ...harder in native code 
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Performance figures depend on... 

 Workload : What do the atomic blocks do?  How long is spent inside 
them? 

 Baseline implementation: Mature existing compiler, or prototype? 

 Intended semantics: Support static separation?  Violation freedom 
(TDRF)?   

 STM implementation: In-place updates, deferred updates, eager/lazy 
conflict detection, visible/invisible readers? 

 STM-specific optimizations: e.g. to remove or downgrade redundant TM 
operations 

 Integration: e.g. dynamically between the GC and the STM, or inlining of 
STM functions during compilation 

 Implementation effort: low-level perf tweaks, tuning, etc. 

 Hardware: e.g. performance of CAS and memory system 
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Labyrinth 

 STAMP v0.9.10 

 256x256x3 grid 

 Routing 256 paths 

 Almost all execution inside atomic 
blocks 

 Atomic blocks can attempt 100K+ 
updates 

 C# version derived from original C 

 Compiled using Bartok, whole 
program mode, C# -> x86 (~80% 
perf of original C with VS2008) 

 Overhead results with Core2 Duo 
running Windows Vista 

s1 

e1 

“STAMP: Stanford Transactional Applications for Multi-Processing” 
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008 
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Sequential overhead 

STM implementation supporting static separation 
In-place updates 

Lazy conflict detection 
Per-object STM metadata 

Addition of read/write barriers before accesses 
Read: log per-object metadata word 

Update: CAS on per-object metadata word 
Update: log value being overwritten 
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Sequential overhead 
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Dynamic filtering to remove redundant logging 
 

Log size grows with #locations accessed 
Consequential reduction in validation time 

1st level: per-thread hashtable (1024 entries) 
2nd level: per-object bitmap of updated fields 
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Sequential overhead 
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Data-flow optimizations 
 

Remove repeated log operations 
Open-for-read/update on a per-object basis 

Log-old-value on a per-field basis 
Remove concurrency control on newly-allocated objects 
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Sequential overhead 
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Inline optimized filter operations 
 
 
 
 
 

Re-use table_base between filter operations 
Avoids caller save/restore on filter hits 

mov eax <- obj_addr 
and eax <- eax, 0xffc 
mov ebx <- [table_base + eax] 
cmp ebx, obj_addr 
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Scaling – Labyrinth 
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#Threads 

Static separation 
strong isolation 

1.0 = wall-clock execution time 
of sequential code without 

concurrency control 
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Scaling – Genome 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

1 2 3 4 5 6 7 8 

E
x

e
cu

ti
o

n
 t

im
e

  /
 s

e
q

. b
a

se
li

n
e

 

#Threads 

Static separation 
strong isolation 

Non-blocking data structures and transactional memory 45 



TM programming 
 
models 



What we want 

Hardware 

Concurrency primitives 

Library Library Library 

Library 

Library 
Library 

Library 

Libraries build layered 
concurrency 
abstractions  
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Library 

Locks and condition 
variables  
(a) are hard to use and  
(b) do not compose 

Hardware 

What we have 
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Atomic blocks 

Atomic blocks built over transactional memory.  
In Haskell: 3 primitives: atomic, retry, orElse 

Library Library Library 

Library 

Library 
Library 

Library 

Hardware 
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Atomic memory transactions 

 To a first approximation, just write the sequential code, and 
wrap atomic around it 

 All-or-nothing semantics: Atomic commit 

 Atomic block executes in Isolation 

 Cannot deadlock (there are no locks!) 

 Atomicity makes error recovery easy  
(e.g. exception thrown inside the PopLeft code) 

Like database 
transactions 

ACID 
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Atomic blocks compose (locks do not) 

 Guarantees to get two consecutive items 

 PopLeft() is unchanged  

 Cannot be achieved with locks (except by 
breaking the PopLeft abstraction) 

Composition 
is THE way we 

build big 
programs 
that work 
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 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)” 

 No lost wake-ups 

 No consequential change to GetTwo(), even though GetTwo 
must wait for there to be two items in the queue 

Blocking: how does PopLeft wait for data? 
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 do {...this...} orelse {...that...} tries to run “this” 

 If “this” retries, it runs “that” instead 

 If both retry, the do-block retries.  GetEither() will thereby wait 
for there to be an item in either queue 

Q1 Q2 

R 

Choice: waiting for either of two queues 

53 



Programming with atomic blocks 
With locks, you think about: 

 Which lock protects which data?  What data can be mutated 
when by other threads? Which condition variables must be 
notified when?  

 None of this is explicit in the source code 
 

With atomic blocks you think about 

 What are the invariants (e.g. the tree is balanced)? 

 Each atomic block maintains the invariants 

 Purely sequential reasoning within a block, which is dramatically 
easier 

 Much easier setting for static analysis tools 
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Compilation 

Source 
code 

Bytecode 
Native 
code 

Source to bytecode compiler; 
typically “csc” in C#, “javac” for 

Java 

Bytecode-to-native compiler; 
JIT or traditional compilation 
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Atomic blocks 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      TxStart(); 
      QElem e = new QElem(item); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!TxCommit()); 
  } 
 
  ... 
} 
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Boilerplate around transactions 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        va = p.a; 
        vb = p.b; 
        p.a = vb; 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 

Keep running the 
atomic block in a 

fresh tx each time 

Commit (on 
normal or exn exit) 

Commit fails by raising 
a TxInvalid exception; 

re-execute 

(I’m using source code 
examples for clarity; in 
reality this would be in 
the compiler’s internal 

intermediate code) 
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 Naïve expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        TxWrite(tx, &va, TxRead(tx, &p.a)); 
        TxWrite(tx, &vb, TxRead(tx, &p.b)); 
        TxWrite(tx, &p.a, TxRead(tx, &vb)); 
        TxWrite(tx, &p.b, TxRead(tx, &va)); 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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What are the problems here with STM? 

 Using the STM for thread-private local variables 

 Repeatedly mapping from addresses to concurrency 
control info 

 Duplicating concurrency control work if it’s implemented at 
a per-object granularity 
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Decomposed STM primitive API 

 OpenForRead(tx, obj) 

 OpenForRead(tx, addr) 

 OpenForUpdate(tx, obj) 

 OpenForUpdate(tx, addr) 

 

 LogForUndo(tx, addr) 

Indicate intent to read from 
an object or from a given 

address 

Indicate intent to update 
a specific address (& 

optional size) 
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Using the decomposed API 

x = p.a; 
OpenForRead(tx, p); 
x = p.a; 

p.b = y; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = y; 
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... 
OpenForUpdate(tx, p); 
OpenForRead(tx, p); 
va = p.a; 
OpenForRead(tx, p); 
Vb = p.b; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.a); 
p.a = vb; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = va; 
... 

Second OpenForRead 
made unnecessary by first 

Second OpenForUpdate 
made unnecessary by first 

Always need update 
access: get it first 
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Implementation using decomposed API 



 Improved expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        OpenForUpdate(tx, p); 
        va = p.a; 
        vb = p.b; 
        LogForUndo(tx, &p.a); 
        p.a = vb; 
        LogForUndo(tx, &p.b); 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    p.a = 10; 
    p.b = i; 
  } 
}   

Original (contrived) source code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    p.a = 10; 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Expanded with decomposed API operations 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  p.a = 10; 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Hoisting loop-invariant code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
for (int i = 0; i < 10; i ++) { 
    tmp1 = OpenForUpdate(tx, p); 
    tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
    p.a = 10 <tmp2>; 
    tmp3 = LogForUndo(tx, &p.b) <tmp1>; 
    p.b = i <tmp3>; 
  } 
}   

Introduce dependencies 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  tmp1 = OpenForUpdate(tx, p); 
  tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
  tmp3 = LogForUndo(tx, &p.a) <tmp1>; 
  p.a = 10 <tmp2>; 
  for (int i = 0; i < 10; i ++) { 
    p.b = i <tmp3>; 
  } 
}   

Transformations must respect dependencies 
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Are we done? 

 Blocking operations (retry / orelse) 

 Local variables 

 By-ref parameters 

 Method calls 

 Sandboxing zombie transactions 

 IO and other native operations 
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TM perspectives 



Granularity 

Distributed, large-scale 
atomic actions 

Composable shared  
memory data structures 

“Leaf” shared memory 
data structures 

General purpose atomic 
actions in a program 
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Programming abstraction 

Lock elision 

The program’s semantics is 
defined using locks.  TM is used 
as an implementation 
mechanism. 

Speculation 

Semantics defined by speculative 
execution, commit, etc. (either  
implicitly, or explicitly) 

Atomic 

Semantics defined by atomic 
execution (e.g. “atomic { X }”).  
Speculation, if used, is 
abstracted by the 
implementation. 
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Purpose 

Makes software easier 
to develop /  

verify /  
maintain / … 

Faster: better than 
alternatives, 

irrespective of 
complexity 
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Design points that I like 

HW DCAS / 3-CAS / … 
Granularity: leaf data structures 

Abstraction: atomic multi-word CAS 
Purpose: faster 

HTM with limited guarantees (~ASF) 
Granularity: leaf data structures 
Abstraction: short transactions 

Purpose: faster 

Static separation (e.g., STM-Haskell) 
Granularity: composable data structures 

Abstraction: atomic actions 
Purpose: easier, decent perf 
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Design points I am sceptical about 

Speculative lock elision on general-purpose s/w 

“atomic” blocks over normal data in a high-level language 
(C#/Java) 

(prove me wrong, I would like either of these to work!) 
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Correctness 

Ease to  
write 

What do we care about? 

76 

When can it 
be used? 

How well 
does it scale? 

How fast is it? 


