
MPhil course in Multicore Programming (R204)

Exercise sheet (Tim Harris’ section)

Due: 20 Jan 2014

Please hand to student admin, with a coversheet.

1. In the slides, the pseudo-code for the MCS “acquireMCS” operation shows that the new QNode is only linked

into the queue after performing a CAS operation. This makes the “releaseMCS” operation more complicated

because a call to “releaseMCS” might need to wait until it sees that a lock holder has linked its QNode into

the queue. Show why it would be incorrect to optimize the “acquireMCS” operation by initializing prev-

>next to point to the new QNode before performing the CAS (that is, moving the line at Label 2 to occur

earlier at Label 1).

2. A “ticket lock” is implemented using two shared counters, T and C, both initially 0. A thread wanting to

acquire the lock uses an atomic fetch-and-add on T to obtain a unique sequence number. The thread then

waits until C is equal to this sequence number. After releasing the lock, a thread increments C.

What are the advantages / disadvantages of this ticket lock compared with a test-and-test-and-set lock, and

compared with the MCS queue lock?

3. Programmers often use the phrase “lock-free” informally to mean that an algorithm is fast and scalable,

even if it does not provide the lock-free progress property. Describe a workload where the singly-linked list

in the slides will not be fast and scalable, but a normal lock-based list could be better.

4. Consider a simple shared counter that supports an “Increment” operation. Each increment advances the

counter’s value by 1 and returns the counter’s new value – 1, 2, 3, etc.

a) Explain whether or not the following history is linearizable:

- Time 0 : Thread 1 invokes Increment

- Time 10 : Thread 1 receives response 1

- Time 11 : Thread 1 invokes Increment

- Time 20 : Thread 2 invokes Increment

- Time 21 : Thread 1 receives response 3

- Time 22 : Thread 1 invokes Increment

- Time 30 : Thread 2 receives response 2

- Time 31 : Thread 1 receives response 4

b) In pseudo-code, give a lock-free implementation of “Increment” using an atomic compare and swap

operation.

c) Explain whether or not your implementation is also wait-free.

[Optional: if your counter is not wait-free, then can you see a way to build a wait-free one from

compare and swap, or can you see how to write a proof-sketch that it is impossible to build one?]

MPhil course in Multicore Programming (R204)

Practical exercise (Tim Harris’ section)

Due: 20 Jan 2014

Please hand to student admin, with a coversheet.

The aim is to investigate the practical performance of different reader-writer lock implementations on a real

machine.

The written report that is submitted should include (i) graph(s) showing the performance of the different

implementations developed, (ii) a summary of the machine being used (how many cores it has, which language and

operating system were used), and (iii) a short description explaining the reasons for the performance that you see –

500 words is sufficient.

The problems can be tackled in any suitable programming language on a multi-core machine or other parallel

computer. However, please make sure that the machine has at least 4 cores, 4 processors, or 4 hardware threads

(the CL’s teaching lab includes suitable machines). C, C++, and Java are all possible languages to use. The course

web page includes a link to example code to help you get started.

When timing experiments please use “wall-clock” time (measured from starting the program until when it finishes).

Each experiment should take a few seconds to run, and so cycle-accurate timing is not needed: from a UNIX shell

prompt you could use the “time” utility.

1. Check that the example code builds and runs correctly. In particular, try passing in a large value to the

“delay” function and make sure that the compiler is not optimizing the loop away. (For this exercise it is best

to use a timing loop like this, rather than a proper “sleep” function, to reduce interactions between the test

program and the OS).

2. Extend the “main” function to take a command line parameter saying the number of threads to use (N). The

harness should start N threads. The program should only exit once all the threads are done.

To check that the harness works correctly, start off by having each thread call “delay” with a parameter for a

delay of about 1s. Plot a graph showing the execution time as you vary N. Start with N=1 and raise N until it

is twice the number of cores on your machine.

Check that:

a) If N is <= the number of cores on your machine then the execution time should stay at about 1s

(as with a single thread).

b) The execution time should rise above 1s as you raise N above the number of cores on the

machine.

3. Implement a read-only test harness: Have the threads share a single array of X integers, and write a sum()

function to calculate the sum of these integers. Each thread will loop, calling sum() repeatedly. Arrange that

the program exits when thread 0 has performed a fixed number of these calls. Try the experiments with X=5

and with X=5000.

How fast is the original program on a single core if you do not use any locking?

How fast is this program if you run it on multiple cores, but acquire a built-in mutex for each call to sum()?

(e.g., in Java, you could make sum a synchronized method, and in C you could use a pthread mutex). Plot a

graph showing the execution time as you vary N. As before, start with N=1 and raise N until it is twice the

number of cores on your machine. This version is overly pessimistic – all of the operations are being

serialized by the lock, even though they are read-only.

4. Implement a test-and-test-and-set mutual exclusion lock, and repeat using that instead of the built in lock.

Since this is just a mutual exclusion lock, all of the readers will still be serialized unnecessarily.

5. Implement a test-and-test-and-set reader-writer lock, based on the example on slide 67. This will allow

multiple readers to acquire the lock at the same time, but it involves more synchronization than the basic

mutual exclusion lock. Repeat the experiment with the different values of X and N and plot the results – is

the reader-writer lock faster than the mutual exclusion lock?

6. Implement the flag-based reader-writer lock (slide 69). Repeat the experiment with the different values of X

and N and plot the results – does the flag-based lock actually scale better than the test-and-test-and-set

reader-writer lock?

7. Finally, try the version number scheme (slide 75), and repeat the experiments and plot the results as before.

[Optional: This workload only includes read operations. Suppose that every 100 operations each thread

performs a write to an entry in the shared array, and so it needs to acquire the lock in write mode. Does this

small number of writes change the relative performance and scaling of the different locks? Do you see

starvation of reads or writes under any of the different implementations?]

