
LU Decomposition

LU decomposition is a better way to implement Gauss elimination, especially for repeated solving a
number of equations with the same left-hand side. That is, for solving the equation Ax = b with different
values of b for the same A.

Note that in Gauss elimination the left-hand side (A) and the right-hand side (b) are modi£ed within
the same loop and there is no way to save the steps taken during the elimination process. If the equation
has to be solved for different values of b, the elimination step has do to done all over again.

Let’s take an example where the solutions are needed for different values of b (e.g., determining the
position of a moving object from different sets of radar equations). Since elimination takes more than
90% of the computational load, it would be better modify A only, save the results and use them repeat-
edly with different values of b.

This provides the motivation for LU decomposition where a matrix A is written as a product of a
lower triangular matrix L and an upper triangular matrix U . That is, A is decomposed as A = LU .

The original equation is to solve

Ax − b = 0ff

At the end of the Gauss elimination, the resulting equations were

a11x1 + a12x2 + · · · + a1nxn = b1

a′22x2 + a′23x3 + · · · + a′2nxn = b′2
a′′33x3 + a′′34x4 + · · · a′′3n = b′′3

...

a(n−1)
nn xn = b(n−1)

n

which can be written as

Ux − d = 0 (1)

Let’s premultiply (1) by another matrix L, which results in

L(Ux − d) = 0

That is,

LUx − Ld = 0 (2)

Comparing (1) and (2), it is clear that

LU = A

Ld = b (3)

To reduce computational load, L is taken an a lower triangular matrix with 1’s along the diagonal.
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Now, we have two equations to solve

Ld = b (4)

Ux = d (5)

in order to solve for x. The advantage is that L captures the transformation (using Gauss elimination)
from the original matrix A to the upper diagonal matrix U . That is, if L and U are stored, the steps in
the Gauss elimination are also stored. Then, if we have to solve the equation for different values of b, we
could use the stored values of L and U , instead of doing the elimination once again.
Solving Ax = b using LU decomposition

Decomposition Factor A into A = LU . The upper diagonal matrix U is given by the result of the
elimination step in Gauss elimination.

U =




a11 a12 · · · · · · a1nxn

0 a′22 a′23 · · · a′2n

0 0 a′′33 · · · a′′3n
...

0 0 · · · 0 a
(n−1)
nn




The lower diagonal matrix L is given by

L =




1 0 0 0 . . . 0
a21
a11

1 0 0 . . . 0
a31
a11

a′
32

a′
22

1 0 . . . 0
...




(6)

Substitution This involves two steps

1. Forward substitution: Solve Ld = b to £nd d. The values of di are given by

d1 = b1

di = bi −
i−1∑
j=1

lijbj i = 2, 3, . . . , n

2. Back substitution: Solve Ux = d to £nd x. The values of xi are given by

xn =
dn

unn

xi =
di − ∑n

j=i+1 uijxj

uii
i = n − 1, n − 2, . . . , 1 (7)

The pseudocode for solving Ax = b via LU decomposition is given below.

% Diagonalization

for k = 1 : n-1
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for i = k+1 : n
a(i,k) = a(i,k) / a(k,k)
for j = k+1:n

a(i,j) = a(i,j) - a(i,k) . a(k,j)
end

end
end

% Forward substitution to solve Ld=b

x(1)=b(1)
for i = 2 : n

s=0
for j = 1 : i-1

s = s + a(i,j) * x(j)
end
x(i) = b(i) - s

end

% back substitution to solve Ux=d

x(n) = x(n) / a(n, n)
for i = n-1 : -1 : 1

s=0
for j = i+1 to n

s = s + a( i, j) * x(j)
end
x(i) = (x(i) - s)/a(i,i)

end

LU decomposition requires n3

3 + O(n2) operations, which is the same as in the case of Gauss elim-
ination. But the advantage is that once the matrix A is decomposed into A = LU , the substitution step
can be carried out ef£ciently for different values of b. Note that the elimination step in Gauss elimination
takes n3

3 + O(n) operation as opposed to n2 operations for substitution. The steps of solving Ax = b
using LU decomposition are shown in Figure 1.

Finding the inverse of a matrix using LU decomposition

Consider a 3 × 3 matrix A. Finding the inverse of A involves three sets of linear equations

Ax =




1
0
0




Ay =




0
1
0
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Figure 1: Steps of solving Ax = b using LU decomposition

Az =




0
0
1




(8)

The the inverse A−1 is given by

A−1 = [x y z] (9)

where x, y and z are the solutions (column vectors) of the three sets of linear equations given earlier.

The solutions x, y and z can be found using LU decomposition. First decompose A into A = LU ,
save L and U and then carry out the substitution step three times to £nd x, y and z. This is an ef£cient
was of £nd the inverse of a matrix.

The pseudocode for £nding the inverse of a matrix is given below:

%BEGIN DECOMPOSITION

% Diagonalization

for k = 1 : n-1
for i = k+1 : n

a(i,k) = a(i,k) / a(k,k)
for j = k+1:n

a(i,j) = a(i,j) - a(i,k) . a(k,j)
end

end
end
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%END DECOMPOSITION

for i = 1 : n
for j = 1 : n

if i = j
b(j) = 1

else
b(j) = 0

end
end

x(1)=b(1)
for k = 2 : n

s=0
for j = 1 : k-1

s = s + a(k,j) * x(j)
end
x(k) = b(k) - s

end

% back substitution to solve Ux=d

x(n) = x(n) / a(n, n)
for k = n-1 : -1 : 1

s=0
for j = k+1 to n

s = s + a( k, j) * x(j)
end
x(k) = (x(k) - s)/a(k,k)

end

for j = 1: n
a(j,i) = x(j)

end
end
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