Outline of today's lecture

Compositional semantics: the construction of meaning based on syntax and morphology.

Lecture 6: Compositional semantics

Compositional semantics using lambda calculus

Logical representations in broad coverage grammars

Simple semantics in feature structures

Dependency structures

Inference

Recognising Textual Entailment task

Sentence meaning as logical form

Kitty chased Rover. Rover was chased by Kitty.

Logical form (simplified!):

chase'(k, r)

k and r are constants (*Kitty* and *Rover*), chase' is the predicate corresponding to *chase*.

- Sentence structure conveys some meaning: obtained by syntactic representation plus rules of semantic composition.
- Principle of Compositionality: meaning of each whole phrase derivable from meaning of its parts.

Semantic composition rules are non-trivial

Ordinary pronouns contribute to the semantics:

It barked.

 $\exists x[bark'(x) \land PRON(x)]$

Pleonastic pronouns don't:

It rained.

Similar syntactic structures may have different meanings.

Different syntactic structures may have the same meaning:

Kim seems to sleep.

It seems that Kim sleeps.

Differences in presentation but not in truth conditions.

Compositional semantics using lambda calculus

Lambda calculus and composition

- One semantic composition rule per syntax rule.
- S -> NP VP VP'(NP')
- Rover barks: VP bark is λx [bark'(x)] NP Rover is r $\lambda x[\mathsf{bark}'(x)](r) = \mathsf{bark}'(r)$

Compositional semantics using lambda calculus

Transitive verbs

Kitty chases Rover

- ► Transitive verbs: two arguments (NOTE the order) $\lambda x[\lambda y[\text{chase}'(y,x)]]$
- ▶ VP -> Vtrans NP
 Vtrans'(NP')
- $\lambda x \lambda y [\text{chase}'(y, x)](r) = \lambda y [\text{chase}'(y, r)]$
- ► S -> NP VP VP'(NP')
- $\rightarrow \lambda y[\text{chase}'(y,r)](k) = \text{chase}'(k,r)]$

Grammar fragment using lambda calculus

```
S -> NP VP
VP'(NP')
VP -> Vt.rans NP
Vtrans'(NP')
VP -> Vintrans
Vintrans<sup>1</sup>
Vtrans -> chases
\lambda x \lambda y [chase'(y,x)]
Vintrans -> barks
\lambda z[bark'(z)]
Vintrans -> sleeps
\lambda w[sleep'(w)]
NP -> Kitty
k
```

Compositional semantics using lambda calculus

Beyond toy examples ...

- ▶ Use first order logic where possible (e.g., event variables).
- However, First Order Predicate Calculus (FOPC) is sometimes inadequate: e.g., most, may, believe.
- Quantifier scoping multiplies analyses: Every cat chased some dog: ∀x[cat'(x) ⇒ ∃y[dog'(y) ∧ chase'(x, y)]]

$$\forall x [cat'(x) \implies \exists y [dog'(y) \land chase'(x, y)]]$$
$$\exists y [dog'(y) \land \forall x [cat'(x) \implies \land chase'(x, y)]]$$

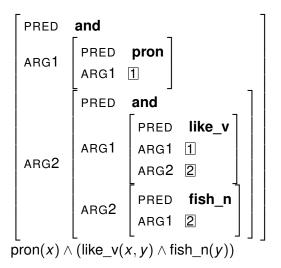
- Often no straightforward logical analysis e.g., Bare plurals such as Ducks lay eggs.
- Non-compositional phrases (multiword expressions): e.g., red tape meaning bureaucracy.

Logical representations in broad coverage grammars

Event variables

- Allow first order treatment of adverbs and PPs modifying verbs by reifying the event.
- Rover barked.
- ▶ instead of bark'(r) we have $\exists e[bark'(e, r)]$
- Rover barked loudly.
- ▶ $\exists e[\mathsf{bark}'(e,r) \land \mathsf{loud}'(e)]$
- There was an event of Rover barking and that event was loud.

Logical representations in broad coverage grammars


Simple compositional semantics in feature structures

- An alternative to lambda calculus
- Semantics is built up along with syntax
- Subcategorization 'slot' filling instantiates syntax
- Formally equivalent to logical representations (below: predicate calculus with no quantifiers)
- Alternative FS encodings possible

```
Example they like fish: with semantics pron(x) \land (like\_v(x, y) \land fish\_n(y))
```

[└] Simple semantics in feature structures

Feature structure encoding of semantics

Lecture 6: Compositional semantics

[└]Simple semantics in feature structures

Noun entry

```
fish

\begin{bmatrix}
AGR & [] \\
AGR & []
\end{bmatrix}

OBJ fld
SUBJ fld

SEM

\begin{bmatrix}
INDEX & 1 \\
PRED & fish_n \\
ARG1 & 1
\end{bmatrix}
```

► Corresponds to fish(x) where the INDEX points to the characteristic variable of the noun (that is x).

```
The INDEX is unambiguous here, but e.g., picture(x, y) \land sheep(y)
```

Simple semantics in feature structures

Noun entry

```
fish

HEAD

CAT n
AGR []

OBJ fld
SUBJ fld

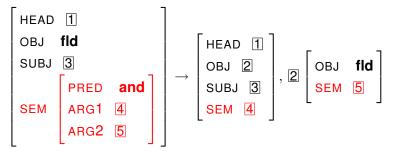
SUBJ fld

INDEX 1
PRED fish_n
ARG1 1
```

Corresponds to fish(x) where the INDEX points to the characteristic variable of the noun (that is x). The INDEX is unambiguous here, but e.g., picture(x, y) ∧ sheep(y) picture of sheep

Simple semantics in feature structures

Verb entry

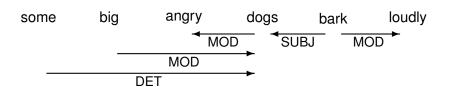

like

```
HEAD CAT V AGR PI
     HEAD CAT n
    OBJ fld
SEM [INDEX 2]
OBJ
SUBJ
     PRED like_v
SEM ARG1
```

Lecture 6: Compositional semantics

Simple semantics in feature structures

Verb-object rule


- As in Lecture 5: object of the verb (DTR2) 'fills' the OBJ slot
- New: semantics on the mother is the 'and' of the semantics of the dtrs

Simple semantics in feature structures

Dependency structures

Dependency structure

- Alternative to syntax trees and to logical representation for 'who does what to whom'.
- Relate words to each other via labelled directed arcs (dependencies).
- May be syntactic or semantic.

Lecture 6: Compositional semantics

☐ Dependency structures

Semantic dependencies

Equivalent to:

$$_some_q \ (x, _big_a(e1,x) \land _angry_a(e2,x) \land _dog_n(x), \\ \quad _bark_v(e3,x) \land _loud_a(e4,e3))$$

which in this case can be converted into FOPC:

$$\exists x \ [\ \underline{big}\underline{a(e1,x)} \land \underline{angry}\underline{a(e2,x)} \land \underline{dog}\underline{n(x)} \land \\ \underline{bark}\underline{v(e3,x)} \land \underline{loud}\underline{a(e4,e3)} \]$$

Natural language inference

- Inference on a knowledge base: convert natural language expression to KB expression, valid inference according to KB.
 - + Precise
 - + Formally verifiable
 - + Disambiguation using KB state
 - Limited domain, requires KB to be formally encodable
- Language-based inference: does one utterance follow from another?
 - + Unlimited domain
 - +/- Human judgement
 - -/+ Approximate/imprecise
- Both approaches may use logical form of utterance.

Lexical meaning and meaning postulates

- Some inferences validated on logical representation directly, most require lexical meaning.
- meaning postulates: e.g.,

$$\forall x [\mathsf{bachelor'}(x) \to \mathsf{man'}(x) \land \mathsf{unmarried'}(x)]$$

- usable with compositional semantics and theorem provers
- e.g. from 'Kim is a bachelor', we can construct the LF bachelor'(Kim) and then deduce unmarried'(Kim)
- Problematic in general, OK for narrow domains or micro-worlds.

Recognising Textual Entailment (RTE) shared tasks

- T: The girl was found in Drummondville earlier this month.
- H: The girl was discovered in Drummondville.
 - DATA: pairs of text (T) and hypothesis (H). H may or may not follow from T.
 - TASK: label TRUE (if follows) or FALSE (if doesn't follow), according to human judgements.

Recognising Textual Entailment task

RTE using logical forms

- ➤ T sentence has logical form T', H sentence has logical form H'
- ▶ If $T' \implies H'$ conclude TRUE, otherwise conclude FALSE.
- The girl was found in Drummondville earlier this month.
- T' $\exists x, u, e[girl'(x) \land find'(e, u, x) \land in'(e, Drummondville) \land earlier-this-month'(e)]$
- H The girl was discovered in Drummondville.
- $\mathsf{H}' \ \exists x, u, e[\mathsf{girl}'(x) \land \mathsf{discover}'(e, u, x) \land \mathsf{in}'(e, \mathsf{Drummondville})]$
- MP [find' $(x, y, z) \implies \text{discover'}(x, y, z)$]
 - ightharpoonup So T' \Longrightarrow H' and we conclude TRUE

Recognising Textual Entailment task

More complex examples

- T: Four Venezuelan firefighters who were traveling to a training course in Texas were killed when their sport utility vehicle drifted onto the shoulder of a highway and struck a parked truck.
- H: Four firefighters were killed in a car accident.

Systems using logical inference are not robust to missing information: simpler techniques can be effective (partly because of choice of hypotheses in RTE).

More examples

- T: Clinton's book is not a big seller here.
- H: Clinton's book is a big seller.
- T: After the war the city was briefly occupied by the Allies and then was returned to the Dutch.
- H: After the war, the city was returned to the Dutch.
- T: Lyon is actually the gastronomic capital of France.
- H: Lyon is the capital of France.

Recognising Textual Entailment task

Recognising Textual Entailment task

Next time ...

- Lexical semantics and semantic relations
- Word sense ambiguity