Outline of today’s lecture

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Lecture 10: Natural Language Generation

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Classification in NLP

- Also sentiment classification, word sense disambiguation and many others. POS tagging (sequences).
- Feature sets vary in complexity and processing needed to obtain features. Statistical classifier allows some robustness to imperfect feature determination.
- Acquiring training data is expensive.
- Few hard rules for selecting a classifier: e.g., Naive Bayes often works even when independence assumption is clearly wrong (as with pronouns). Experimentation, e.g., with WEKA toolkit.
Lecture 10: Natural Language Generation

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Generation

Generation from what?! (Yorick Wilks)

- Logical form: inverse of (deep) parsing. aka realisation (but realisation often from a syntax tree). Special case: in an MT system using semantic transfer.
- Formally-defined data: databases, knowledge bases, semantic web ontologies, etc.
- Semi-structured data: tables, graphs etc.
- Numerical data: e.g., weather reports.
- User input (plus other data sources) in assistive communication.

Generating from data often requires domain experts.
Regeneration: transforming text

- Text from partially ordered bag of words: statistical MT.
- Paraphrase
- Summarization (single- or multi- document)
- Wikipedia article construction from text fragments
- Text simplification

Also: mixed generation and regeneration systems, MT.
Components of a generation system

Content determination deciding what information to convey
Discourse structuring overall ordering, sub-headings etc
Aggregation deciding how to split information into
sentence-sized chunks
Referring expression generation deciding when to use
pronouns, which modifiers to use etc
Lexical choice which lexical items convey a given concept (or
predicate choice)
Realization mapping from a meaning representation (or syntax
tree) to a string (or speech)
Fluency ranking
Approaches to generation

- Classical (limited domain): hand-written rules for first five steps, grammar for realization, grammar small enough that no need for fluency ranking (or hand-written rules).
- Templates: most practical systems. Fixed text with slots, fixed rules for content determination.
- Statistical (limited domain): components as above, but use machine learning (supervised or non-supervised).
- Regeneration: symbolic or statistical or mixed.
Lecture 10: Natural Language Generation

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Input: cricket scorecard

<table>
<thead>
<tr>
<th>India innings (50 overs maximum)</th>
<th>R</th>
<th>M</th>
<th>B</th>
<th>4s</th>
<th>6s</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Ganguly run out (Silva/Sangakarra)</td>
<td>9</td>
<td>37</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>47.36</td>
</tr>
<tr>
<td>V Sehwag run out (Fernando)</td>
<td>39</td>
<td>61</td>
<td>40</td>
<td>6</td>
<td>0</td>
<td>97.50</td>
</tr>
<tr>
<td>D Mongia b Samaraweera</td>
<td>48</td>
<td>91</td>
<td>63</td>
<td>6</td>
<td>0</td>
<td>76.19</td>
</tr>
<tr>
<td>SR Tendulkar c Chandana b Vaas</td>
<td>113</td>
<td>141</td>
<td>102</td>
<td>12</td>
<td>1</td>
<td>110.78</td>
</tr>
</tbody>
</table>

...
Extras (lb 6, w 12, nb 7) 25
Total (all out; 50 overs; 223 mins) 304
India beat Sri Lanka by 63 runs. Tendulkar made 113 off 102 balls with 12 fours and a six. . . .

Actual report:
The highlight of a meaningless match was a sublime innings from Tendulkar, . . . he drove with elan to make 113 off just 102 balls with 12 fours and a six.
India beat Sri Lanka by 63 runs. Tendulkar made 113 off 102 balls with 12 fours and a six. . . .

Actual report:

The highlight of a meaningless match was a sublime innings from Tendulkar, . . . he drove with elan to make 113 off just 102 balls with 12 fours and a six.
Representing the data

- Granularity: we need to be able to consider individual (minimal?) information chunks (cf factoids in summarisation).
- Abstraction: generalize over instances.
- Faithfulness to source versus closeness to natural language?
- Inferences over data (e.g., amalgamation of scores)?
- Formalism.

e.g., name(team1/player4, Tendulkar), balls-faced(team1/player4, 102)
Content selection

There are thousands of factoids in each scorecard: we need to select the most important.

\[
\text{name(\text{team1}, \text{India}), total(\text{team1}, 304), }
\text{name(\text{team2}, \text{Sri Lanka}), result(win, \text{team1}, 63), }
\text{name(\text{team1/player4}, \text{Tendulkar}), }
\text{runs(\text{team1/player4}, 113), }
\text{balls-faced(\text{team1/player4}, 102), }
\text{fours(\text{team1/player4}, 12), }
\text{sixes(\text{team1/player4}, 1)}
\]
Discourse structure and (first stage) aggregation

Distribute data into sections and decide on overall ordering:

Title: `name(team1, India), name(team2, Sri Lanka), result(win,team1,63)`

First sentence: `name(team1/player4, Tendulkar), runs(team1/player4, 113), fours(team1/player4, 12), sixes(team1/player4, 1), balls-faced(team1/player4, 102)`

Reports often state the highlights and then describe events in chronological order.
Predicate choice (lexical selection)

Mapping rules from the initial scorecard predicates:

\[
\text{result}(\text{win}, t1, n) \mapsto _\text{beat}_v(e, t1, t2), _\text{by}_p(e, r), _\text{run}_n(r), \text{card}(r, n)
\]

\[
\text{name}(t, C) \mapsto \text{named}(t, C)
\]

This gives:

\[
\text{name}(\text{team1, India}), \text{name}(\text{team2, Sri Lanka}), \text{result}(\text{win, team1, 63}) \mapsto \\
\text{named}(t1, \text{‘India’}), \text{named}(t2, \text{‘Sri Lanka’}), _\text{beat}_v(e, t1, t2), _\text{by}_p(e, r), _\text{run}_n(r), \text{card}(r, \text{‘63’})
\]

Realistic systems would have multiple mapping rules. This process may require refinement of aggregation.
Generating referring expressions

\[
\text{named}(t1p4, \text{‘Tendulkar’}), _\text{made}_v(e,t1p4,r), \text{card}(r,\text{‘113’}), \\
\text{run}(r), _\text{off}_p(e,b), \text{ball}(b), \text{card}(b,\text{‘102’}), _\text{with}_w(e,f), \\
\text{card}(f,\text{‘12’}), _\text{four}_n(f), _\text{with}_w(e,s), \text{card}(s,\text{‘1’}), _\text{six}_n(s) \\
\rightarrow \text{Tendulkar made 113 runs off 102 balls with 12 fours with 1 six.}
\]

This is not grammatical. So convert:

\[
_\text{with}_w(e,f), \text{card}(f,\text{‘12’}), _\text{four}_n(f), _\text{with}_w(e,s), \\
\text{card}(s,\text{‘1’}), _\text{six}_n(s)
\]

into:

\[
_\text{with}_w(e,c), _\text{and}(c,f,s), \text{card}(f,\text{‘12’}), _\text{four}_n(f), \\
\text{card}(s,\text{‘1’}), _\text{six}_n(s)
\]

Also: ‘113 runs’ to ‘113’
Realisation

Produce grammatical strings in ranked order:

Tendulkar made 113 off 102 balls with 12 fours and one six.
Tendulkar made 113 with 12 fours and one six off 102 balls.

...
113 off 102 balls was made by Tendulkar with 12 fours and one six.
Lecture 10: Natural Language Generation

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Result India won by 63 runs

<table>
<thead>
<tr>
<th>India innings (50 overs maximum)</th>
<th>R</th>
<th>M</th>
<th>B</th>
<th>4s</th>
<th>6s</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Ganguly run out (Silva/Sangakarra)</td>
<td>9</td>
<td>37</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>47.36</td>
</tr>
<tr>
<td>V Sehwag run out (Fernando)</td>
<td>39</td>
<td>61</td>
<td>40</td>
<td>6</td>
<td>0</td>
<td>97.50</td>
</tr>
<tr>
<td>D Mongia b Samaraweera</td>
<td>48</td>
<td>91</td>
<td>63</td>
<td>6</td>
<td>0</td>
<td>76.19</td>
</tr>
<tr>
<td>SR Tendulkar c Chandana b Vaas</td>
<td>113</td>
<td>141</td>
<td>102</td>
<td>12</td>
<td>1</td>
<td>110.78</td>
</tr>
</tbody>
</table>

 Extras (lb 6, w 12, nb 7) 25
 Total (all out; 50 overs; 223 mins) 304

The highlight of a meaningless match was a sublime innings from Tendulkar, . . . he drove with elan to make 113 off just 102 balls with 12 fours and a six.
Annotate reports with corresponding data structures:

The highlight of a meaningless match was a sublime innings from Tendulkar (team1 player4), . . . and this time he drove with elan to make 113 (team1 player4 R) off just 102 (team1 player4 B) balls with 12 (team1 player4 4s) fours and a (team1 player4 6s) six.
Learning from aligned scorecards and reports

Produce a dataset with large numbers of annotated reports:

- Either: annotate training set by hand (boring!)
- Or: write rules to create training set automatically, using numbers and proper names as links. (Parse the reports?)
Statistical content selection and discourse structuring

Content selection:

- Treat as a classification problem: derive all possible factoids from the data source and decide whether each is in or out, based on training data. Kelly et al (2009) using cricket data.
- Categorise factoids into classes, group factoids.
- Problem: avoiding ‘meaningless’ factoids, e.g. player names with no additional information about their performance.

Discourse structuring: generalising over reports to see where particular information types are presented (cf Wikipedia article generation).
Lecture 10: Natural Language Generation

Classification: from last time

Overview of Natural Language Generation

An extended example: cricket reports

Learning from existing text

Referring expressions
Referring expressions

Given some information about an entity, how do we choose to refer to it?

- Pronouns/proper names/definite expressions etc (generate and test using anaphora resolution).
- Ellipsis and coordination (as in cricket example)
- Attribute selection: need to include enough modifiers to distinguish the expression from possible distractors. e.g., *the dog, the big dog, the big dog in the basket.*
Entities and referring expressions

Figure 2
Another scene: Two dogs and two doghouses (from Krahmer and Theune [2002]).
A meta-algorithm for generating referring expressions

Figure 3
A graph representation of the scene in Figure 2.
A meta-algorithm for generating referring expressions

- Predicates in the KB are arcs on a graph, with nodes corresponding to entities.
- A description is a graph with unlabelled nodes: it matches the KB graph if it can be ‘placed over’ it (subgraph isomorphism).
- A **distinguishing graph** is one that refers to only one entity (i.e., it can only be placed over the KB graph in one way).
- If description refers to entities other than the one we want, the others are **distractors**.
- Aim: lowest cost distinguishing graph.
Algorithm

1. Start from node we want to describe (e.g., d2)
2. Expand graph by adding adjacent edges.
3. Cost function associated with each edge: e.g., full brevity — edge cost is 1.
4. Explore search space, only retaining graphs cheaper than best solution.
5. n^K where K is upper bound on number of edges.
Some issues

- Humans often use redundant expressions.
- Verbosity may be politer, easier to understand, convey emphasis etc
- Require knowledge of syntax: not just predicates. e.g., *earlier* and *before*.
- Limited domain: corpus-based method may be preferable.