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Why NLP is hard
Scope of NLP
A sample application: sentiment classification
More NLP applications
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Lecture 1: Introduction

Overview of the course

NLP and linguistics

NLP: the computational modelling of human language.

1. Morphology — the structure of words: lecture 2.

2. Syntax — the way words are used to form phrases:
lectures 3, 4 and 5.

3. Semantics
◮ Compositional semantics — the construction of meaning

based on syntax: lecture 6.
◮ Lexical semantics — the meaning of individual words:

lecture 7 and 8.

4. Pragmatics — meaning in context: lecture 9.

5. Language generation — lecture 10.

6. Humans vs machines — lecture 11.
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Lecture 1: Introduction

Overview of the course

Also note:

◮ Exercises: pre-lecture and post-lecture
◮ Glossary
◮ Recommended Book: Jurafsky and Martin (2008).
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Lecture 1: Introduction

Why NLP is hard

Querying a knowledge base

User query :
◮ Has my order number 4291 been shipped yet?

Database :

ORDER
Order number Date ordered Date shipped

4290 2/2/13 2/2/13
4291 2/2/13 2/2/13
4292 2/2/13

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,date_shipped=?)
RESPONSE: Order number 4291 was shipped on 2/2/13
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Lecture 1: Introduction

Why NLP is hard

Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the TZ?

2. How fast will my TZ arrive?

3. Please tell me when I can expect the TZ I ordered.

Ambiguity:
◮ Do you sell Sony laptops and disk drives?
◮ Do you sell (Sony (laptops and disk drives))?
◮ Do you sell (Sony laptops) and disk drives)?
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Lecture 1: Introduction

Why NLP is hard

Wouldn’t it be better if . . . ?

The properties which make natural language difficult to process
are essential to human communication:

◮ Flexible
◮ Learnable but compact
◮ Emergent, evolving systems

Synonymy and ambiguity go along with these properties.
Natural language communication can be indefinitely precise:

◮ Ambiguity is mostly local (for humans)
◮ Semi-formal additions and conventions for different genres
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Lecture 1: Introduction

Scope of NLP

Some NLP applications

◮ spelling and grammar
checking

◮ optical character
recognition (OCR)

◮ screen readers
◮ augmentative and

alternative communication
◮ machine aided translation
◮ lexicographers’ tools

◮ information retrieval
◮ document classification
◮ document clustering
◮ information extraction
◮ sentiment classification
◮ question answering
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Lecture 1: Introduction

Scope of NLP

More NLP applications . . .

◮ summarization
◮ text segmentation
◮ exam marking
◮ language teaching
◮ report generation

◮ machine translation
◮ natural language interfaces

to databases
◮ email understanding
◮ dialogue systems
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Lecture 1: Introduction

A sample application: sentiment classification

Sentiment classification: finding out what people think
about you

◮ Task: scan documents for positive and negative opinions
on people, products etc.

◮ Find all references to entity in some document collection:
list as positive, negative (possibly with strength) or neutral.

◮ Summaries plus text snippets.
◮ Fine-grained classification:

e.g., for phone, opinions about: overall design, keypad,
camera.

◮ Still often done by humans . . .
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Lecture 1: Introduction

A sample application: sentiment classification

Samsung Galaxy Note 3 (from the Guardian)

If you’re after a phablet, the Samsung Galaxy Note 3
is the best one available right now.
It’s a snappy, lag-free experience, with great battery
life and fast charging, but it’s just not big enough to be
a proper 7in tablet replacement.
It’s also likely be too big for most users looking for a
smartphone, who will struggle to fit it in their pockets
and will find it near-on impossible to use one-handed.
Samsung’s TouchWiz customisations to Android are
often gimmicky and confusing, but they can be turned
off to save frustration and battery life. . . .
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Lecture 1: Introduction

A sample application: sentiment classification

Sentiment classification: the research task

◮ Full task: information retrieval, cleaning up text structure,
named entity recognition, identification of relevant parts of
text. Evaluation by humans.

◮ Research task: preclassified documents, topic known,
opinion in text along with some straightforwardly
extractable score.

◮ Movie review corpus, with ratings.
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Lecture 1: Introduction

A sample application: sentiment classification

IMDb: An American Werewolf in London (1981)

Rating: 9/10

Ooooo. Scary.
The old adage of the simplest ideas being the best is
once again demonstrated in this, one of the most
entertaining films of the early 80’s, and almost
certainly Jon Landis’ best work to date. The script is
light and witty, the visuals are great and the
atmosphere is top class. Plus there are some great
freeze-frame moments to enjoy again and again. Not
forgetting, of course, the great transformation scene
which still impresses to this day.
In Summary: Top banana
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Lecture 1: Introduction

A sample application: sentiment classification

Bag of words technique

◮ Treat the reviews as collections of individual words.
◮ Classify reviews according to positive or negative words.
◮ Could use word lists prepared by humans, but machine

learning based on a portion of the corpus (training set) is
preferable.

◮ Use star rankings for training and evaluation.
◮ Pang et al, 2002: Chance success is 50% (movie database

was artificially balanced), bag-of-words gives 80%.
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A sample application: sentiment classification

Sentiment words

thanks
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Lecture 1: Introduction

A sample application: sentiment classification

Sentiment words: ever

ever
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Lecture 1: Introduction

A sample application: sentiment classification

Some sources of errors for bag-of-words

◮ Negation:

Ridley Scott has never directed a bad film.

◮ Overfitting the training data:
e.g., if training set includes a lot of films from before 2005,
Ridley may be a strong positive indicator, but then we test
on reviews for ‘Kingdom of Heaven’?

◮ Comparisons and contrasts.
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Lecture 1: Introduction

A sample application: sentiment classification

Contrasts in the discourse

This film should be brilliant. It sounds like a great plot,
the actors are first grade, and the supporting cast is
good as well, and Stallone is attempting to deliver a
good performance. However, it can’t hold up.
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Lecture 1: Introduction

A sample application: sentiment classification

More contrasts

AN AMERICAN WEREWOLF IN PARIS is a failed
attempt . . . Julie Delpy is far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity.
This isn’t necessarily a good thing, since it prevents us
from relaxing and enjoying AN AMERICAN
WEREWOLF IN PARIS as a completely mindless,
campy entertainment experience. Delpy’s injection of
class into an otherwise classless production raises the
specter of what this film could have been with a better
script and a better cast . . . She was radiant,
charismatic, and effective . . .
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Lecture 1: Introduction

A sample application: sentiment classification

Sample data

http://www.cl.cam.ac.uk/~aac10/sentiment/
(linked from
http://www.cl.cam.ac.uk/~aac10/stuff.html)
See test data texts in:
http://www.cl.cam.ac.uk/~aac10/sentiment/test/
classified into positive/negative.

http://www.cl.cam.ac.uk/~aac10/sentiment/
http://www.cl.cam.ac.uk/~aac10/stuff.html
http://www.cl.cam.ac.uk/~aac10/sentiment/test/
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Lecture 1: Introduction

A sample application: sentiment classification

Doing sentiment classification ‘properly’?

◮ Morphology, syntax and compositional semantics:
who is talking about what, what terms are associated with
what, tense . . .

◮ Lexical semantics:
are words positive or negative in this context? Word
senses (e.g., spirit)?

◮ Pragmatics and discourse structure:
what is the topic of this section of text? Pronouns and
definite references.

◮ But getting all this to work well on arbitrary text is very hard.
◮ Ultimately the problem is AI-complete, but can we do well

enough for NLP to be useful?
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Lecture 1: Introduction

More NLP applications

IR, IE and QA

◮ Information retrieval: return documents in response to a
user query (Internet Search is a special case)

◮ Information extraction: discover specific information from a
set of documents (e.g. company joint ventures)

◮ Question answering: answer a specific user question by
returning a section of a document:

What is the capital of France?
Paris has been the French capital for many centuries.
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Lecture 1: Introduction

More NLP applications

MT

◮ Earliest attempted NLP application
◮ High quality only if the domain is restricted
◮ Utility greatly increased with increase in availability of

electronic text
◮ Good applications for bad MT . . .
◮ Spoken language translation is viable for limited domains
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Lecture 1: Introduction

More NLP applications

Human translation?
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More NLP applications

Human translation?

I am not in the office at the moment. Please send any work to
be translated.
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Lecture 1: Introduction

More NLP applications

Natural language interfaces and dialogue systems

All rely on a limited domain:
◮ LUNAR: classic example of a natural language interface to

a database (NLID): 1970–1975
◮ SHRDLU: (text-based) dialogue system: 1973
◮ Current spoken dialogue systems

Limited domain allows disambiguation: e.g., in LUNAR, rock
had one sense.
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Lecture 1: Introduction

NLP components

Generic NLP modules

◮ input preprocessing: speech recogniser, text preprocessor
or gesture recogniser.

◮ morphological analysis
◮ part of speech tagging
◮ parsing: this includes syntax and compositional semantics
◮ disambiguation
◮ context module
◮ text planning
◮ tactical generation
◮ morphological generation
◮ output processing: text-to-speech, text formatter, etc.
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Lecture 1: Introduction

NLP components

Natural language interface to a knowledge base

KB
*

KB/CONTEXT
6

PARSING
6

MORPHOLOGY
6

INPUT PROCESSING
6

user input

j
KB/DISCOURSE STRUCTURING

?
REALIZATION

?
MORPHOLOGY GENERATION

?
OUTPUT PROCESSING

?
output
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Lecture 1: Introduction

NLP components

General comments

◮ Even ‘simple’ applications might need complex knowledge
sources

◮ Applications cannot be 100% perfect
◮ Applications that are < 100% perfect can be useful
◮ Aids to humans are easier than replacements for humans
◮ NLP interfaces compete with non-language approaches
◮ Shallow processing on arbitrary input or deep processing

on narrow domains
◮ Limited domain systems require extensive and expensive

expertise to port
◮ External influences on NLP are very important
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Lecture 1: Introduction

NLP components

Outline of the next lecture

Lecture 2: Morphology and finite state techniques
A brief introduction to morphology
Using morphology
Spelling rules
Finite state techniques
More applications for finite state techniques
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Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Some terminology

◮ morpheme: the minimal information carrying unit
◮ affix: morpheme which only occurs in conjunction with

other morphemes
◮ words are made up of a stem (more than one in the case

of compounds) and zero or more affixes. e.g., dog plus
plural suffix +s

◮ affixes: prefixes, suffixes, infixes and circumfixes
◮ in English: prefixes and suffixes (prefixes only for

derivational morphology)
◮ productivity: whether affix applies generally, whether it

applies to new words
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Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Inflectional morphology

◮ e.g., plural suffix +s, past participle +ed
◮ sets slots in some paradigm
◮ e.g., tense, aspect, number, person, gender, case
◮ inflectional affixes are not combined in English
◮ generally fully productive (modulo irregular forms)
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Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Derivational morphology

◮ e.g., un-, re-, anti-, -ism, -ist etc
◮ broad range of semantic possibilities, may change part of

speech
◮ indefinite combinations

e.g., antiantidisestablishmentarianism
anti-anti-dis-establish-ment-arian-ism

◮ generally semi-productive
◮ zero-derivation (e.g. tango, waltz)
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Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually
ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)
Structural ambiguity: e.g., shorts/short -s
unionised could be union -ise -ed or un- ion -ise -ed
Bracketing:

◮ un- ion is not a possible form
◮ un- is ambiguous:

◮ with verbs: means ‘reversal’ (e.g., untie)
◮ with adjectives: means ‘not’ (e.g., unwise)

◮ internal structure of un- ion -ise -ed
has to be (un- ((ion -ise) -ed))

Temporarily skip 2.3
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Using morphology

Applications of morphological processing

◮ compiling a full-form lexicon
◮ stemming for IR (not linguistic stem)
◮ lemmatization (often inflections only): finding stems and

affixes as a precursor to parsing
NB: may use parsing to filter results (see lecture 5)
e.g., feed analysed as fee-ed (as well as feed)
but parser blocks (assuming lexicon does not have fee as a
verb)

◮ generation
Morphological processing may be bidirectional: i.e.,
parsing and generation.

sleep + PAST_VERB <-> slept
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Using morphology

Lexical requirements for morphological processing

◮ affixes, plus the associated information conveyed by the
affix

ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

◮ irregular forms, with associated information similar to that
for affixes

began PAST_VERB begin
begun PSP_VERB begin

◮ stems with syntactic categories (plus more)
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Using morphology

Mongoose

A zookeeper was ordering extra animals for his zoo. He started
the letter:

“Dear Sir, I need two mongeese.”

This didn’t sound right, so he tried again:

“Dear Sir, I need two mongooses.”

But this sounded terrible too. Finally, he ended up with:

“Dear Sir, I need a mongoose, and while you’re at it,
send me another one as well.”
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Spelling rules

Spelling rules (sec 2.3)

◮ English morphology is essentially concatenative
◮ irregular morphology — inflectional forms have to be listed
◮ regular phonological and spelling changes associated with

affixation, e.g.
◮ -s is pronounced differently with stem ending in s, x or z
◮ spelling reflects this with the addition of an e (boxes etc)

◮ in English, description is independent of particular
stems/affixes
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Spelling rules

e-insertion
e.g. boxˆs to boxes

ε → e/







s
x
z







ˆ s

◮ map ‘underlying’ form to surface form
◮ mapping is left of the slash, context to the right
◮ notation:

position of mapping
ε empty string
ˆ affix boundary — stem ˆ affix

◮ same rule for plural and 3sg verb
◮ formalisable/implementable as a finite state transducer
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Finite state techniques

Finite state automata for recognition
day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

◮ non-deterministic — after input of ‘2’, in state 2 and state 3.
◮ double circle indicates accept state
◮ accepts e.g., 11/3 and 3/12
◮ also accepts 37/00 — overgeneration



Natural Language Processing

Lecture 2: Morphology and finite state techniques

Finite state techniques

Recursive FSA
comma-separated list of day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

,

1 2 3 4 5 6

◮ list of indefinite length
◮ e.g., 11/3, 5/6, 12/04
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Finite state techniques

Finite state transducer

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

ε → e/







s
x
z







ˆ s

surface : underlying
c a k e s ↔ c a k e ˆ s
b o x e s ↔ b o x ˆ s
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Finite state techniques

Analysing b o x e s

1

b : b
ε : ˆ

2 3

4
Input: b
Output: b
(Plus: ǫ . ˆ)
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Finite state techniques

Analysing b o x e s

1

o : o

2 3

4 Input: b o
Output: b o
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Finite state techniques

Analysing b o x e s

1 2 3

4

x : x

Input: b o x
Output: b o x
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Finite state techniques

Analysing b o x e s

1 2 3

4

e : e
e : ˆ

Input: b o x e
Output: b o x ˆ
Output: b o x e
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Finite state techniques

Analysing b o x e ǫ s

1

ε : ˆ

2 3

4

Input: b o x e
Output: b o x ˆ
Output: b o x e
Input: b o x e ǫ
Output: b o x e ˆ
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Finite state techniques

Analysing b o x e s

1 2

s : s

3

4

s : s Input: b o x e s
Output: b o x ˆ s
Output: b o x e s
Input: b o x e ǫ s
Output: b o x e ˆ s
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Finite state techniques

Analysing b o x e s

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

Input: b o x e s
Accept output: b o x ˆ s
Accept output: b o x e s
Input: b o x e ǫ s
Accept output: b o x e ˆ s
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Finite state techniques

Using FSTs

◮ FSTs assume tokenization (word boundaries) and words
split into characters. One character pair per transition!

◮ Analysis: return character list with affix boundaries, so
enabling lexical lookup.

◮ Generation: input comes from stem and affix lexicons.
◮ One FST per spelling rule: either compile to big FST or run

in parallel.
◮ FSTs do not allow for internal structure:

◮ can’t model un- ion -ize -d bracketing.
◮ can’t condition on prior transitions, so potential redundancy

(cf 2006/7 exam q)
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More applications for finite state techniques

Some other uses of finite state techniques in NLP

◮ Grammars for simple spoken dialogue systems (directly
written or compiled)

◮ Partial grammars for named entity recognition
◮ Dialogue models for spoken dialogue systems (SDS)

e.g. obtaining a date:
1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.
3. Day only is known. System prompts for month.
4. Month and day known.
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More applications for finite state techniques

Example FSA for dialogue

1

mumble

month day

day &
month2

mumble

day

3

mumble

month

4
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Example of probabilistic FSA for dialogue
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More applications for finite state techniques

Next lecture

Lecture 3: Prediction and part-of-speech tagging
Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging
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Outline of today’s lecture

Lecture 3: Prediction and part-of-speech tagging
Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging

First of three lectures that concern syntax (i.e., how words fit
together). This lecture: ‘shallow’ syntax: word sequences and
POS tags. Next lectures: more detailed syntactic structures.
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Corpora in NLP

Corpora

Changes in NLP research over the last 15-20 years are largely
due to increased availability of electronic corpora.

◮ corpus: text that has been collected for some purpose.
◮ balanced corpus: texts representing different genres

genre is a type of text (vs domain)
◮ tagged corpus: a corpus annotated with POS tags
◮ treebank: a corpus annotated with parse trees
◮ specialist corpora — e.g., collected to train or evaluate

particular applications
◮ Movie reviews for sentiment classification
◮ Data collected from simulation of a dialogue system
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Corpora in NLP

Statistical techniques: NLP and linguistics

But it must be recognized that the notion ‘probability of
a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Whenever I fire a linguist our system performance
improves. (Jelinek, 1988?)
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But it must be recognized that the notion ‘probability of
a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Whenever I fire a linguist our system performance
improves. (Jelinek, 1988?)
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Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate to another.

Wright tells her story with great .
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Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate ease to another.

Wright tells her story with great .
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Lecture 3: Prediction and part-of-speech tagging

Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate ease to another.

Wright tells her story with great professionalism .
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Word prediction

Prediction

Prediction is relevant for:
◮ language modelling for speech recognition to disambiguate

results from signal processing: e.g., using n-grams.
(Alternative to finite state grammars, suitable for
large-scale recognition.)

◮ word prediction for communication aids (augmentative and
alternative communication). e.g., to help enter text that’s
input to a synthesiser

◮ text entry on mobile phones and similar devices
◮ OCR, spelling correction, text segmentation
◮ estimation of entropy
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Word prediction

bigrams (n-gram with N=2)
A probability is assigned to a word based on the previous word:

P(wn|wn−1)

where wn is the nth word in a sentence.
Probability of a sequence of words (assuming independence):

P(W n
1 ) ≈

n
∏

k=1

P(wk |wk−1)

Probability is estimated from counts in a training corpus:

C(wn−1wn)
∑

w C(wn−1w)
≈

C(wn−1wn)

C(wn−1)

i.e. count of a particular bigram in the corpus divided by the
count of all bigrams starting with the prior word.



Natural Language Processing

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Calculating bigrams

〈s〉 good morning 〈/s〉 〈s〉 good afternoon 〈/s〉 〈s〉 good
afternoon 〈/s〉 〈s〉 it is very good 〈/s〉 〈s〉 it is good 〈/s〉

sequence count bigram probability

〈s〉 5
〈s〉 good 3 .6
〈s〉 it 2 .4

good 5
good morning 1 .2
good afternoon 2 .4
good 〈/s〉 2 .4

〈/s〉 5
〈/s〉 〈s〉 4 1
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Word prediction

Sentence probabilities

Probability of 〈s〉 it is good afternoon 〈/s〉 is estimated as:
P(it|〈s〉)P(is|it)P(good|is)P(afternoon|good)P(〈/s〉|afternoon)
= .4 × 1 × .5 × .4 × 1 = .08
Problems because of sparse data (cf Chomsky comment):

◮ smoothing: distribute ‘extra’ probability between rare and
unseen events

◮ backoff: approximate unseen probabilities by a more
general probability, e.g. unigrams
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Word prediction

Practical application

◮ Word prediction: guess the word from initial letters. User
confirms each word, so we predict on the basis of
individual bigrams consistent with letters.

◮ Speech recognition: given an input which is a lattice of
possible words, we find the sequence with maximum
likelihood.
Implemented efficiently using dynamic programming
(Viterbi algorithm).
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Part-of-speech (POS) tagging

Part of speech tagging

They can fish .
◮ They_PNP can_VM0 fish_VVI ._PUN
◮ They_PNP can_VVB fish_NN2 ._PUN
◮ They_PNP can_VM0 fish_NN2 ._PUN no full parse

POS lexicon fragment:
they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb
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Part-of-speech (POS) tagging

Part of speech tagging

◮ They_PNP can_VM0 fish_VVI ._PUN
◮ They_PNP can_VVB fish_NN2 ._PUN
◮ They_PNP can_VM0 fish_NN2 ._PUN no full parse

POS lexicon fragment:
they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb
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Part-of-speech (POS) tagging

Why POS tag?

◮ Coarse-grained syntax / word sense disambiguation: fast,
so applicable to very large corpora.

◮ Some linguistic research and lexicography: e.g., how often
is tango used as a verb? dog?

◮ Named entity recognition and similar tasks (finite state
patterns over POS tagged data).

◮ Features for machine learning e.g., sentiment
classification. (e.g., stink_V vs stink_N)

◮ Preliminary processing for full parsing: cut down search
space or provide guesses at unknown words.

Note: tags are more fine-grained than conventional part of
speech. Different possible tagsets.
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Part-of-speech (POS) tagging

Stochastic part of speech tagging using Hidden
Markov Models (HMM)

1. Start with untagged text.

2. Assign all possible tags to each word in the text on the
basis of a lexicon that associates words and tags.

3. Find the most probable sequence (or n-best sequences) of
tags, based on probabilities from the training data.

◮ lexical probability: e.g., is can most likely to be VM0, VVB,
VVI or NN1?

◮ and tag sequence probabilities: e.g., is VM0 or NN1 more
likely after PNP?
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Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP
those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0
people_NN2 fish_VVB in_PRP these_DT0 areas_NN2
._PUN

sequence count bigram probability

NN2 4
NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25

Also lexicon: fish NN2 VVB
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Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP
those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0
people_NN2 fish_VVB in_PRP these_DT0 areas_NN2
._PUN

sequence count bigram probability

NN2 4
NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25

Also lexicon: fish NN2 VVB
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Part-of-speech (POS) tagging

Assigning probabilities
Our estimate of the sequence of n tags is the sequence of n
tags with the maximum probability, given the sequence of n
words:

t̂n
1 = argmax

tn
1

P(tn
1 |w

n
1 )

By Bayes theorem:

P(tn
1 |w

n
1 ) =

P(wn
1 |t

n
1 )P(tn

1 )

P(wn
1 )

We’re tagging a particular sequence of words so P(wn
1 ) is

constant, giving:

t̂n
1 = argmax

tn
1

P(wn
1 |t

n
1 )P(tn

1 )
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Part-of-speech (POS) tagging

Assigning probabilities, continued
Bigram assumption: probability of a tag depends on the
previous tag, hence approximate by the product of bigrams:

P(tn
1 ) ≈

n
∏

i=1

P(ti |ti−1)

Probability of the word estimated on the basis of its own tag
alone:

P(wn
1 |t

n
1 ) ≈

n
∏

i=1

P(wi |ti)

Hence:

t̂n
1 = argmax

tn
1

n
∏

i=1

P(wi |ti)P(ti |ti−1)
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Part-of-speech (POS) tagging

Example

Tagging: they fish
Assume PNP is the only tag for they, and that fish could be
NN2 or VVB.
Then the estimate for PNP NN2 will be:

P(they|PNP) P(NN2|PNP) P(fish|NN2)

and for PNP VVB:

P(they|PNP) P(VVB|PNP) P(fish|VVB)
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Part-of-speech (POS) tagging

Assigning probabilities, more details

◮ Maximise the overall tag sequence probability — e.g., use
Viterbi.

◮ Actual systems use trigrams — smoothing and backoff are
critical.

◮ Unseen words: these are not in the lexicon, so use all
possible open class tags, possibly restricted by
morphology.
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Evaluation in general, evaluation of POS tagging

Evaluation of POS tagging

◮ percentage of correct tags
◮ one tag per word (some systems give multiple tags when

uncertain)
◮ over 95% for English on normal corpora (but note

punctuation is unambiguous)
◮ baseline of taking the most common tag gives 90%

accuracy
◮ different tagsets give slightly different results: utility of tag

to end users vs predictive power (an open research issue)
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Evaluation in general, evaluation of POS tagging

Evaluation in general

◮ Training data and test data Test data must be kept unseen,
often 90% training and 10% test data.

◮ Baseline
◮ Ceiling Human performance on the task, where the ceiling

is the percentage agreement found between two
annotators (interannotator agreement)

◮ Error analysis Error rates are nearly always unevenly
distributed.

◮ Reproducibility
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Evaluation in general, evaluation of POS tagging

Representative corpora and data sparsity

◮ test corpora have to be representative of the actual
application

◮ POS tagging and similar techniques are not always very
robust to differences in genre

◮ balanced corpora may be better, but still don’t cover all text
types

◮ communication aids: extreme difficulty in obtaining data,
text corpora don’t give good prediction for real data
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Evaluation in general, evaluation of POS tagging

Outline of next lecture

Lecture 4: Context-free grammars and parsing
Generative grammar
Simple context free grammars
Simple chart parsing with CFGs
More advanced chart parsing
Formalism power requirements
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Parsing

Syntactic structure in analysis:
◮ as a step in assigning semantics
◮ checking grammaticality
◮ corpus-based investigations, lexical acquisition etc

Lecture 4: Context-free grammars and parsing
Generative grammar
Simple context free grammars
Simple chart parsing with CFGs
More advanced chart parsing
Formalism power requirements

Next lecture — beyond simple CFGs
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Generative grammar

Generative grammar

a formally specified grammar that can generate all and only the
acceptable sentences of a natural language
Internal structure:

the big dog slept

can be bracketed

((the (big dog)) slept)

constituent a phrase whose components ‘go together’ . . .

weak equivalence grammars generate the same strings

strong equivalence grammars generate the same strings with
same brackets
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Simple context free grammars

Context free grammars

1. a set of non-terminal symbols (e.g., S, VP);

2. a set of terminal symbols (i.e., the words);

3. a set of rules (productions), where the LHS (mother) is a
single non-terminal and the RHS is a sequence of one or
more non-terminal or terminal symbols (daughters);

S -> NP VP
V -> fish

4. a start symbol, conventionally S, which is a non-terminal.

Exclude empty productions, NOT e.g.:

NP -> ǫ
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Simple context free grammars

A simple CFG for a fragment of English

rules

S -> NP VP
VP -> VP PP
VP -> V
VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP

lexicon

V -> can
V -> fish
NP -> fish
NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it
NP -> they
P -> in
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Simple context free grammars

Analyses in the simple CFG

they fish

(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))

(S (NP they) (VP (V can) (NP fish)))

they fish in rivers

(S (NP they) (VP (VP (V fish))
(PP (P in) (NP rivers))))
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Simple context free grammars

Analyses in the simple CFG

they fish

(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))
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they fish in rivers

(S (NP they) (VP (VP (V fish))
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Simple context free grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))

(PP (P in) (NP rivers)
(PP (P in) (NP December)))))

(S (NP they)
(VP (VP (VP (V fish))

(PP (P in) (NP rivers)))
(PP (P in) (NP December))))
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Simple context free grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))

(PP (P in) (NP rivers)
(PP (P in) (NP December)))))

(S (NP they)
(VP (VP (VP (V fish))

(PP (P in) (NP rivers)))
(PP (P in) (NP December))))
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Simple context free grammars

Parse trees
S

NP VP

they V VP

can VP PP

V

fish

P NP

in December

(S (NP they)
(VP (V can)

(VP (VP (V fish))
(PP (P in)

(NP December)))))
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Simple chart parsing with CFGs

Chart parsing
A dynamic programming algorithm (memoisation):

chart store partial results of parsing in a vector
edge representation of a rule application

Edge data structure:

[id,left_vtx, right_vtx,mother_category, dtrs]

. they . can . fish .
0 1 2 3

Fragment of chart:

id l r ma dtrs
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (3 6)
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Simple chart parsing with CFGs

A bottom-up passive chart parser

Parse :
Initialize the chart
For each word word, let from be left vtx,
to right vtx and dtrs be (word)

For each category category
lexically associated with word

Add new edge from, to, category, dtrs
Output results for all spanning edges
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Simple chart parsing with CFGs

Inner function

Add new edge from, to, category, dtrs:
Put edge in chart: [id,from,to, category,dtrs]
For each rule lhs → cat1 . . . catn−1,category

Find sets of contiguous edges
[id1,from1,to1, cat1,dtrs1] . . .

[idn−1,fromn−1,from, catn−1,dtrsn−1]
(such that to1 = from2 etc)
For each set of edges,

Add new edge from1, to, lhs, (id1 . . . id)
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Simple chart parsing with CFGs

Bottom up parsing: edges

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = they, categories = {NP}
Add new edge 0, 1, NP, (they)
Matching grammar rules: {VP→V NP, PP→P NP}
No matching edges corresponding to V or P
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = can, categories = {V}
Add new edge 1, 2, V, (can)
Matching grammar rules: {VP→V}
recurse on edges {(2)}
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 2, VP, (2)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges {(1,3)}
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 2, S, (1, 3)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}
No edges for V VP
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = fish, categories = {V, NP}
Add new edge 2, 3, V, (fish) NB: fish as V
Matching grammar rules: {VP→V}
recurse on edges {(5)}
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, VP, (5)
Matching grammar rules: {S →NP VP, VP →V VP}
No edges match NP
recurse on edges for V VP: {(2,6)}
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 6)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges for NP VP: {(1,7)}
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Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 7)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP →V VP}
No edges matching V



Natural Language Processing

Lecture 4: Context-free grammars and parsing

Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, NP, (fish) NB: fish as NP
Matching grammar rules: {VP→V NP, PP→P NP}
recurse on edges for V NP {(2,9)}
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Lecture 4: Context-free grammars and parsing

Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 9)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges for NP VP: {(1, 10)}
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Lecture 4: Context-free grammars and parsing

Simple chart parsing with CFGs

Parse construction

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 10)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}
No edges corresponding to V VP

Matching grammar rules: {VP→V NP, PP→P NP}
No edges corresponding to P NP
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Simple chart parsing with CFGs

Output results for spanning edges

Spanning edges are 8 and 11:
Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))

Output results for 11

(S (NP they) (VP (V can) (NP fish)))

Note: sample chart parsing code in Java is downloadable from
the course web page.
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More advanced chart parsing

Packing

◮ exponential number of parses means exponential time
◮ body can be cubic time: don’t add equivalent edges as

whole new edges
◮ dtrs is a set of lists of edges (to allow for alternatives)

about to add: [id,l_vtx, right_vtx,ma_cat, dtrs]
and there is an existing edge:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old]

we simply modify the old edge to record the new dtrs:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old ∪ dtrs]

and do not recurse on it: never need to continue computation
with a packable edge.
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Lecture 4: Context-free grammars and parsing

More advanced chart parsing

Packing example

1 0 1 NP {(they)}
2 1 2 V {(can)}
3 1 2 VP {(2)}
4 0 2 S {(1 3)}
5 2 3 V {(fish)}
6 2 3 VP {(5)}
7 1 3 VP {(2 6)}
8 0 3 S {(1 7)}
9 2 3 NP {(fish)}

Instead of edge 10 1 3 VP {(2 9)}

7 1 3 VP {(2 6), (2 9)}

and we’re done
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Lecture 4: Context-free grammars and parsing

More advanced chart parsing

Packing example

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP

+

Both spanning results can now be extracted from edge 8.
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Lecture 4: Context-free grammars and parsing

More advanced chart parsing

Packing example

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

+

Both spanning results can now be extracted from edge 8.



Natural Language Processing

Lecture 4: Context-free grammars and parsing

More advanced chart parsing

Packing example

they can fish

1:NP 2:V
3:VP

4:S

5:V
6:VP

7:VP

8:S 9:NP

+

Both spanning results can now be extracted from edge 8.
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More advanced chart parsing

Ordering the search space

◮ agenda: order edges in chart by priority
◮ top-down parsing: predict possible edges

Producing n-best parses:
◮ manual weight assignment
◮ probabilistic CFG — trained on a treebank

◮ automatic grammar induction
◮ automatic weight assignment to existing grammar

◮ beam-search
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Why not FSA?
centre-embedding:

A → αAβ

generate grammars of the form anbn.
For instance:

the students the police arrested complained

However, limits on human memory / processing ability:

? the students the police the journalists criticised arrested
complained

More importantly:

1. FSM grammars are extremely redundant

2. FSM grammars don’t support composition of semantics
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Why not FSA?
centre-embedding:

A → αAβ

generate grammars of the form anbn.
For instance:

the students the police arrested complained

However, limits on human memory / processing ability:

? the students the police the journalists criticised arrested
complained

More importantly:

1. FSM grammars are extremely redundant

2. FSM grammars don’t support composition of semantics
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Overgeneration in atomic category CFGs

◮ agreement: subject verb agreement. e.g., they fish, it
fishes, *it fish, *they fishes. * means ungrammatical

◮ case: pronouns (and maybe who/whom) e.g., they like
them, *they like they

S -> NP-sg-nom VP-sg
S -> NP-pl-nom VP-pl
VP-sg -> V-sg NP-sg-acc
VP-sg -> V-sg NP-pl-acc
VP-pl -> V-pl NP-sg-acc
VP-pl -> V-pl NP-pl-acc

NP-sg-nom -> he
NP-sg-acc -> him
NP-sg-nom -> fish
NP-pl-nom -> fish
NP-sg-acc -> fish
NP-pl-acc -> fish

BUT: very large grammar, misses generalizations, no way of
saying when we don’t care about agreement.
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Overgeneration in atomic category CFGs

◮ agreement: subject verb agreement. e.g., they fish, it
fishes, *it fish, *they fishes. * means ungrammatical

◮ case: pronouns (and maybe who/whom) e.g., they like
them, *they like they

S -> NP-sg-nom VP-sg
S -> NP-pl-nom VP-pl
VP-sg -> V-sg NP-sg-acc
VP-sg -> V-sg NP-pl-acc
VP-pl -> V-pl NP-sg-acc
VP-pl -> V-pl NP-pl-acc

NP-sg-nom -> he
NP-sg-acc -> him
NP-sg-nom -> fish
NP-pl-nom -> fish
NP-sg-acc -> fish
NP-pl-acc -> fish

BUT: very large grammar, misses generalizations, no way of
saying when we don’t care about agreement.
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Formalism power requirements

Subcategorization

◮ intransitive vs transitive etc
◮ verbs (and other types of words) have different numbers

and types of syntactic arguments:

*Kim adored
*Kim gave Sandy
*Kim adored to sleep
Kim liked to sleep
*Kim devoured
Kim ate

◮ Subcategorization is correlated with semantics, but not
determined by it.
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Overgeneration because of missing subcategorization

Overgeneration:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

◮ Informally: need slots on the verbs for their syntactic
arguments.

◮ intransitive takes no following arguments (complements)
◮ simple transitive takes one NP complement
◮ like may be a simple transitive or take an infinitival

complement, etc
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Formalism power requirements

Long-distance dependencies

1. which problem did you say you don’t understand?
2. who do you think Kim asked Sandy to hit?
3. which kids did you say were making all that noise?

‘gaps’ (underscores below)
1. which problem did you say you don’t understand _?
2. who do you think Kim asked Sandy to hit _?
3. which kids did you say _ were making all that noise?

In 3, the verb were shows plural agreement.

* what kid did you say _ were making all that noise?

The gap filler has to be plural.

◮ Informally: need a ‘gap’ slot which is to be filled by
something that itself has features.
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Context-free grammar and language phenomena

◮ CFGs can encode long-distance dependencies
◮ Language phenomena that CFGs cannot model (without a

bound) are unusual — probably none in English.
◮ BUT: CFG modelling for English or another NL could be

trillions of rules
◮ Enriched formalisms: CFG equivalent or greater power
◮ Does CFGness matter?
◮ Human processing vs linguistic generalisations. Human

generalisations?
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Lecture 4: Context-free grammars and parsing

Formalism power requirements

Outline of next lecture

Providing a more adequate treatment of syntax than simple
CFGs: replacing the atomic categories by more complex data
structures.

Lecture 5: Constraint-based grammars
From lecture 4
Beyond simple CFGs
Feature structures (informally)
Encoding agreement
Parsing with feature structures
Feature stuctures more formally
Encoding subcategorisation
Interface to morphology
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Lecture 5: Constraint-based grammars

Outline of today’s lecture

Lecture 5: Constraint-based grammars
From lecture 4
Beyond simple CFGs
Feature structures (informally)
Encoding agreement
Parsing with feature structures
Feature stuctures more formally
Encoding subcategorisation
Interface to morphology
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Lecture 5: Constraint-based grammars

From lecture 4

Subcategorization

◮ intransitive vs transitive etc
◮ verbs (and other types of words) have different numbers

and types of syntactic arguments:

*Kim adored
*Kim gave Sandy
*Kim adored to sleep
Kim liked to sleep
*Kim devoured
Kim ate

◮ Subcategorization is correlated with semantics, but not
determined by it.
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Lecture 5: Constraint-based grammars

From lecture 4

Overgeneration because of missing subcategorization

Overgeneration:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

◮ Informally: need slots on the verbs for their syntactic
arguments.

◮ intransitive takes no following arguments (complements)
◮ simple transitive takes one NP complement
◮ like may be a simple transitive or take an infinitival

complement, etc
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From lecture 4

Long-distance dependencies

1. which problem did you say you don’t understand?
2. who do you think Kim asked Sandy to hit?
3. which kids did you say were making all that noise?

‘gaps’ (underscores below)
1. which problem did you say you don’t understand _?
2. who do you think Kim asked Sandy to hit _?
3. which kids did you say _ were making all that noise?

In 3, the verb were shows plural agreement.

* what kid did you say _ were making all that noise?

The gap filler has to be plural.

◮ Informally: need a ‘gap’ slot which is to be filled by
something that itself has features.
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Lecture 5: Constraint-based grammars

From lecture 4

Context-free grammar and language phenomena

◮ CFGs can encode long-distance dependencies
◮ Language phenomena that CFGs cannot model (without a

bound) are unusual — probably none in English.
◮ BUT: CFG modelling for English or another NL could be

trillions of rules
◮ Enriched formalisms: CFG equivalent or greater power
◮ Does CFGness matter?
◮ Human processing vs linguistic generalisations. Human

generalisations?
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From lecture 4

Constraint-based grammar (feature structures)

Providing a more adequate treatment of syntax than simple
CFGs by replacing the atomic categories by more complex data
structures.

◮ Feature structure formalisms give good linguistic accounts
for many languages

◮ Reasonably computationally tractable
◮ Bidirectional (parse and generate)
◮ Used in LFG and HPSG formalisms

Can also think of CFGs as constraints on trees.
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Beyond simple CFGs

Expanded CFG (from last time)

S -> NP-sg-nom VP-sg
S -> NP-pl-nom VP-pl
VP-sg -> V-sg NP-sg-acc
VP-sg -> V-sg NP-pl-acc
VP-pl -> V-pl NP-sg-acc
VP-pl -> V-pl NP-pl-acc

NP-sg-nom -> he
NP-sg-acc -> him
NP-sg-nom -> fish
NP-pl-nom -> fish
NP-sg-acc -> fish
NP-pl-acc -> fish
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Beyond simple CFGs

Intuitive solution for case and agreement

◮ Separate slots (features) for CASE and AGR
◮ Slot values for CASE may be nom (e.g., they), acc (e.g.,

them) or unspecified (i.e., don’t care)
◮ Slot values for AGR may be sg , pl or unspecified
◮ Subjects have the same value for AGR as their verbs
◮ Subjects have CASE nom , objects have CASE acc

can (n)





CASE [ ]

AGR sg



 fish (n)





CASE [ ]

AGR [ ]





she





CASE nom

AGR sg



 them





CASE acc

AGR pl




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Feature structures (informally)

Feature structures




CASE [ ]

AGR sg





1. Features like AGR with simple values: atomic-valued

2. Unspecified values possible on features: compatible with
any value.

3. Values for features for subcat and gap themselves have
features: complex-valued

4. path: a sequence of features

5. Method of specifying two paths are the same: reentrancy

6. Unification: combining two feature structures, retaining all
information from each, or fail if information is incompatible.
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Feature structures (informally)

Simple unification examples

1.





CASE [ ]

AGR sg



 ⊓





CASE nom

AGR [ ]



 =





CASE nom

AGR sg





2.





CASE [ ]

AGR sg



 ⊓
[

AGR [ ]
]

=





CASE [ ]

AGR sg





3.





CASE [ ]

AGR sg



 ⊓





CASE nom

AGR pl



 = fail
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Feature structures (informally)

Feature structures, continued

◮ Feature structures are singly-rooted directed acyclic
graphs, with arcs labelled by features and terminal nodes
associated with values.





CASE [ ]

AGR sg





CASE
-

AGR

j
sg

◮ In grammars, rules relate FSs — i.e. lexical entries and
phrases are represented as FSs

◮ Rule application by unification
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Feature structures (informally)

Graphs and AVMs

Example 1: CAT -NP

AGR

jsg





CAT NP

AGR sg





Here, CAT and AGR are atomic-valued features. NP and sg are
values.

Example 2:
HEAD- CAT -NP

AGR

j



 HEAD





CAT NP

AGR [ ]









HEAD is complex-valued, AGR is unspecified.
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Feature structures (informally)

Reentrancy

a
F

:

G - a





F a

G a





F

zG - a





F 0 a

G 0





Reentrancy indicated by boxed integer in AVM diagram:
indicates path goes to the same node.
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Encoding agreement

CFG with agreement

S -> NP-sg VP-sg
S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
V-pl -> like
V-sg -> likes
NP-sg -> it
NP-pl -> they
NP-sg -> fish
NP-pl -> fish
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Encoding agreement

FS grammar fragment encoding agreement

subj-verb rule





CAT S

AGR 1



 →





CAT NP

AGR 1



,





CAT VP

AGR 1





verb-obj rule





CAT VP

AGR 1



 →





CAT V

AGR 1



,





CAT NP

AGR [ ]





Root structure:
[

CAT S
]

they





CAT NP

AGR pl





fish





CAT NP

AGR [ ]





it





CAT NP

AGR sg





like





CAT V

AGR pl





likes





CAT V

AGR sg




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Parsing with feature structures

Parsing ‘they like it’

◮ The lexical structures for like and it are unified with the
corresponding structures on the right hand side of the
verb-obj rule (unifications succeed).

◮ The structure corresponding to the mother of the rule is
then:





CAT VP

AGR pl





◮ This unifies with the rightmost daughter position of the
subj-verb rule.

◮ The structure for they is unified with the leftmost daughter.
◮ The result unifies with root structure.
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Parsing with feature structures

Rules as FSs
But what does the coindexation of parts of the rule mean? Treat
rule as a FS: e.g., rule features MOTHER, DTR1, DTR2 . . . DTRN.

informally:





CAT VP

AGR 1



 →





CAT V

AGR 1



,





CAT NP

AGR [ ]





actually:





























MOTHER





CAT VP

AGR 1





DTR1





CAT V

AGR 1





DTR2





CAT NP

AGR [ ]
































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Parsing with feature structures

Verb-obj rule application
Feature structure for like unified with the value of DTR1:
















MOTHER

[

CAT VP
AGR 1 pl

]

DTR1

[

CAT V
AGR 1

]

DTR2

[

CAT NP
AGR [ ]

]

















Feature structure for it unified with the value for DTR2:
















MOTHER

[

CAT VP
AGR 1 pl

]

DTR1

[

CAT V
AGR 1

]

DTR2

[

CAT NP
AGR sg

]
















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Parsing with feature structures

Subject-verb rule application 1
MOTHER value from the verb-object rule acts as the DTR2 of the
subject-verb rule:

[

CAT VP
AGR pl

]

unified with the DTR2 of:

















MOTHER

[

CAT S
AGR 1

]

DTR1

[

CAT NP
AGR 1

]

DTR2

[

CAT VP
AGR 1

]

















Gives:
















MOTHER

[

CAT S
AGR 1 pl

]

DTR1

[

CAT NP
AGR 1

]

DTR2

[

CAT VP
AGR 1

]
















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Parsing with feature structures

Subject rule application 2

FS for they:
[

CAT NP
AGR pl

]

Unification of this with the value of DTR1 succeeds (but adds no
new information):
















MOTHER

[

CAT S
AGR 1 pl

]

DTR1

[

CAT NP
AGR 1

]

DTR2

[

CAT VP
AGR 1

]

















Final structure unifies with the root structure:
[

CAT S
]
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Feature stuctures more formally

Properties of FSs

Connectedness and unique root A FS must have a unique root
node: apart from the root node, all nodes have
one or more parent nodes.

Unique features Any node may have zero or more arcs leading
out of it, but the label on each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the
root node or to a node that intervenes between it
and the root node.

Values A node which does not have any arcs leading out
of it may have an associated atomic value.

Finiteness A FS must have a finite number of nodes.
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Feature stuctures more formally

Subsumption

Feature structures are ordered by information content — FS1
subsumes FS2 if FS2 carries extra information.
FS1 subsumes FS2 if and only if the following conditions hold:

Path values For every path P in FS1 there is a path P in FS2. If
P has a value t in FS1, then P also has value t in
FS2.

Path equivalences Every pair of paths P and Q which are
reentrant in FS1 (i.e., which lead to the same node
in the graph) are also reentrant in FS2.

Unification
The unification of two FSs FS1 and FS2 is the most general FS
which is subsumed by both FS1 and FS2, if it exists.
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Encoding subcategorisation

Grammar with subcategorisation

Verb-obj rule:





HEAD 1
OBJ filled
SUBJ 3



 →





HEAD 1
OBJ 2
SUBJ 3



, 2
[

OBJ filled
]

can (transitive verb):













HEAD

[

CAT verb
AGR pl

]

OBJ

[

HEAD
[

CAT noun
]

OBJ filled

]

SUBJ
[

HEAD
[

CAT noun
] ]












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Encoding subcategorisation

Grammar with subcategorisation (abbrev for slides)

Verb-obj rule:





HEAD 1
OBJ fld
SUBJ 3



 →





HEAD 1
OBJ 2
SUBJ 3



, 2
[

OBJ fld
]

can (transitive verb):













HEAD

[

CAT v
AGR pl

]

OBJ

[

HEAD
[

CAT n
]

OBJ fld

]

SUBJ
[

HEAD
[

CAT n
] ]












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Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP
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Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP

+

+
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Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP

+

+



Natural Language Processing

Lecture 5: Constraint-based grammars

Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP

+

+



Natural Language Processing

Lecture 5: Constraint-based grammars

Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP

+

+



Natural Language Processing

Lecture 5: Constraint-based grammars

Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP

+

+



Natural Language Processing

Lecture 5: Constraint-based grammars

Encoding subcategorisation

Concepts for subcategorisation
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with the SUBJ value of the second. (‘the first dtr fills the
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Encoding subcategorisation

Concepts for subcategorisation

◮ HEAD: information shared between a lexical entry and the
dominating phrases of the same category

◮ SUBJ:
The subject-verb rule unifies the first daughter of the rule
with the SUBJ value of the second. (‘the first dtr fills the
SUBJ slot of the second dtr in the rule’)

◮ OBJ:
The verb-object rule unifies the second dtr with the OBJ
value of the first. (‘the second dtr fills the OBJ slot of the
first dtr in the rule’)
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Encoding subcategorisation

Example rule application: they fish 1

Lexical entry for fish:









HEAD

[

CAT v
AGR pl

]

OBJ fld
SUBJ

[

HEAD
[

CAT n
] ]









subject-verb rule:




HEAD 1
OBJ fld
SUBJ fld



 → 2





HEAD
[

AGR 3
]

OBJ fld
SUBJ fld



,





HEAD 1
[

AGR 3
]

OBJ fld
SUBJ 2





unification with second dtr position gives:








HEAD 1

[

CAT v
AGR 3 pl

]

OBJ fld
SUBJ fld









→ 2









HEAD

[

CAT n
AGR 3

]

OBJ fld
SUBJ fld









,





HEAD 1
OBJ fld
SUBJ 2




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Lexical entry for they:









HEAD

[

CAT n
AGR pl

]

OBJ fld
SUBJ fld









unify this with first dtr position:








HEAD 1

[

CAT v
AGR 3 pl

]

OBJ fld
SUBJ fld









→ 2









HEAD

[

CAT n
AGR 3

]

OBJ fld
SUBJ fld









,





HEAD 1
OBJ fld
SUBJ 2





Root is:





HEAD
[

CAT v
]

OBJ fld
SUBJ fld





Mother structure unifies with root, so valid.
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Encoding subcategorisation

Parsing with feature structure grammars

◮ Naive algorithm: standard chart parser with modified rule
application

◮ Rule application:
1. copy rule
2. copy daughters (lexical entries or FSs associated with

edges)
3. unify rule and daughters
4. if successful, add new edge to chart with rule FS as

category

◮ Efficient algorithms reduce copying.
◮ Packing involves subsumption.
◮ Probabilistic FS grammars are complex.
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Interface to morphology

Templates

Capture generalizations in the lexicon:

fish INTRANS_VERB
sleep INTRANS_VERB
snore INTRANS_VERB

INTRANS_VERB



















HEAD





CAT v

AGR pl





OBJ fld

SUBJ

[

HEAD
[

CAT n
]

]


















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Interface to morphology: inflectional affixes as FSs

s



 HEAD





CAT n

AGR pl









if stem is:















HEAD





CAT n

AGR [ ]





OBJ fld

SUBJ fld















stem unifies with affix template.

But unification failure would occur with verbs etc, so we get
filtering (lecture 2).
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Interface to morphology

Outline of next lecture

Compositional semantics: the construction of meaning
(generally expressed as logic) based on syntax.
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