
L25: Modern Compiler Design Exercises

David Chisnall

Due: December 6

These simple exercises account for 20% of the course marks. They are in-
tended to provide practice with the techniques covered in the course. Each
exercise involves modifying one of the two sample systems.

1 ToyRuntime

This system is a (very!) simplified version of a dynamic language runtime with
a class-based model, with no support for inheritance. It is intended to be used
from C and comes with a simple set of macros to allow this use.

The runtime is intentionally highly suboptimal and not thread-safe, allowing
a lot of potential for improvement. The test program shows two trivial imple-
mentations of Fibonacci sequence generators, which use dynamic dispatch for
recursive calls. These provide a very simple benchmark.

You can compile the test program with clang -emit-llvm to generate
LLVM IR (add -S to get the human-readable form) and then transform it in a
variety of ways.

2 CellularAutomata

This is a simple compiler for a domain-specific language for generating cellular
automata. The language itself is intrinsically parallel—you define a rule for
updating each cell based on its existing value and neighbours—but the compiler
executes each iteration entirely sequentially, one cell at a time.

There are lots of opportunities for introducing prallelism into this system.

3 Exercises

You must complete any three of the following tasks:

3.1 Parallel Automata

Extend the CellularAutomata language to execute in parallel, in different threads.
This may make use of an existing library such as libdispatch or your own man-

1



ual pthread creation. Think about how you will partition the execution and
distribute the data.

3.2 Vector Automata

Extend the CellularAutomata language to make use of vectors

3.3 GPU Automata

Extend CellularAutomata language to run on the GPU using the PTX back end
to LLVM (or SPIR, if you can find some drivers that support it). Note that the
GPUs of the machines in the project lab do not support PTX.

3.4 Inverted Dispatch Tables

Modify the example dynamic language runtime to implement inverted dispatch
tables and write an LLVM pass that creates a per-selector function that walks
the inverted dispatch table for each used selector and modifies calls to it to use
it.

The dlsym() function will be useful for setting up the inverted dtables from
the runtime. This is a standard library function that allows running code
to dynamically look up symbols. Note that you may need to compile with
-Wl,--export-dynamic for this to work, depending on the platform.

3.5 Inline Caching

Write an LLVM pass that adds inline caching to method lookup calls for the
dynamic language runtime.

4 Submission

Each exercise should be submitted as source code and a single-page PDF file
outlining the changes that you made, your rationale, and how you evaluated
performance differences.

2


