
Modern Intermediate Representations (IR)

L25: Modern Compiler Design



Reusable IR

• Modern compilers are made from loosely coupled components

• Front ends produce IR

• Middle ‘ends’ transform IR (optimisations)

• Back ends generate native code



Structure of a Modern Compiler

Tokeniser

Parser

AST Builder

Optimiser

Code Generator

Source Code

Token Stream

Parser Actions

Intermediate Representation

Intermediate Representation

Executable Code

As with any other piece of
software using libraries simpli-
fies development.



Structure of a Modern Compiler

Tokeniser

Parser

AST Builder

Optimiser

Code Generator

Source Code

Token Stream

Parser Actions

Intermediate Representation

Intermediate Representation

Executable Code

As with any other piece of
software using libraries simpli-
fies development.



Optimisation Passes

• Modular, transform IR (Analysis passes just inspect IR)

• Can be run multiple times, in different orders

• May not always produce improvements in the wrong order!

• Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

• Stack makes interpreting, naive compilation easier

• Register makes various optimisations easier

• Which ones?



Common Subexpression Elimination: Register IR

Source language:�
a = (b+c) * (b+c); 	� ��
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r4 + r5

r7 = r3 * r6

store a r6 	� �



Common Subexpression Elimination: Register IR

Source language:�
a = (b+c) * (b+c); 	� ��
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r1 + r5

r7 = r3 * r6

store a r7 	� �



Common Subexpression Elimination: Register IR

Source language:�
a = (b+c) * (b+c); 	� ��
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r1 + r2

r7 = r3 * r6

store a r7 	� �



Common Subexpression Elimination: Register IR

Source language:�
a = (b+c) * (b+c); 	� ��
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r1 + r2

r7 = r3 * r3

store a r7 	� �



Common Subexpression Elimination: Stack IR

Source language:�
a = (b+c) * (b+c); 	� ��
load b

load c

add

load b

load c

add

mul

store a 	� �



Common Subexpression Elimination: Stack IR

Source language:�
a = (b+c) * (b+c); 	� ��
load b

load c

add

dup

mul

store a 	� �



Problems with CSE and Stack IR

• Entire operation must happen at once (no incremental
algorithm)

• Finding identical subtrees is possible, reusing results is harder

• If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

• Source code is hierarchical (contains structured flow control,
scoped values)

• Assembly is flat (all flow control is by jumps)

• Intermediate representations are supposed to be somewhere
between the two



Hierarchical IR

• Easy to express high-level constructs

• Preserves program semantics

• Preserves high-level semantics (variable lifetime, exceptions)
clearly

• Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

• Easy to map to the back end

• Simple for optimisations to process

• Examples: LLVM IR, CGIR, PTX



Questions?


