
Modern Intermediate Representations (IR)

L25: Modern Compiler Design



Reusable IR

• Modern compilers are made from loosely coupled components

• Front ends produce IR

• Middle ‘ends’ transform IR (optimisations)

• Back ends generate native code



Structure of a Modern Compiler
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As with any other piece of
software using libraries simpli-
fies development.
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Optimisation Passes

• Modular, transform IR (Analysis passes just inspect IR)

• Can be run multiple times, in different orders

• May not always produce improvements in the wrong order!

• Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

• Stack makes interpreting, naive compilation easier

• Register makes various optimisations easier

• Which ones?



Common Subexpression Elimination: Register IR

Source language:�
a = (b+c) * (b+c); 	� ��
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r4 + r5

r7 = r3 * r6

store a r6 	� �
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Common Subexpression Elimination: Stack IR
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a = (b+c) * (b+c); 	� ��
load b

load c

add

load b
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Common Subexpression Elimination: Stack IR

Source language:�
a = (b+c) * (b+c); 	� ��
load b

load c

add

dup

mul

store a 	� �



Problems with CSE and Stack IR

• Entire operation must happen at once (no incremental
algorithm)

• Finding identical subtrees is possible, reusing results is harder

• If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

• Source code is hierarchical (contains structured flow control,
scoped values)

• Assembly is flat (all flow control is by jumps)

• Intermediate representations are supposed to be somewhere
between the two



Hierarchical IR

• Easy to express high-level constructs

• Preserves program semantics

• Preserves high-level semantics (variable lifetime, exceptions)
clearly

• Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

• Easy to map to the back end

• Simple for optimisations to process

• Examples: LLVM IR, CGIR, PTX



Questions?


