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Sample αProlog code
id : name_type. (* variables *)
tm : type. (* lambda terms *)
var : id -> tm.
app : tm -> tm -> tm.
lam : id\tm -> tm.
pred subst (id\tm) tm tm.
(* "subst (a\X) Y Z" holds if Z is the result of capture-avoiding substitution

of Y for all free occurrences of var a in X *)
subst (a\var a) Y Y.
subst (a\X) Y X :- a # X.
subst (a\app X X’) Y (app Z Z’) :- subst (a\X) Y Z, subst (a\X’) Y Z’.
subst (a\lam(b\X)) Y (lam (b\Z)) :- subst (a\X) Y Z, b # Y.

?- subst (b\lam(a\var b)) (var a) X. (* search for X satisfying X = λa.b[a/b] *)
Yes. X = lam(a’\var a) (* X is λa′.a, not λa.a *)

As for Prolog, search for solutions to queries involves resolution (try
to unify query with head of each clause), but using nominal
unification, which solves α-equivalence and freshness constraints.
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Examples of unification ‘mod α’

over the nominal algebraic signature Σ for λ-calculus:
name-sort Var, data-sort Term, operations
V : Var → Term

A : Term , Term → Term

L : Var . Term → Term

Ex. 1: does there exist a t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?

Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?
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Alpha-equivalence
=α ⊆ Σ(S)× Σ(S)

a ∈ A

a =α a

t =α t′

op t =α op t′ () =α ()

t1 =α t′1 t2 =α t′2
t1 , t2 =α t′1 , t′2

(a1 a) · t1 =α (a2 a) · t2 a # (a1, t1, a2, t2)

a1 . t1 =α a2 . t2
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?

L(b . A((a c) · t , V b)) =α L(a . A(V a , (b c) · t))
where c # (a, b, t)
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?

L(b . A((a c) · t , V b)) =α L(a . A(V a , (b c) · t))
where c # (a, b, t)

A((b d)(a c) · t , V d) =α A(V d , (a d)(b c) · t))
where d # c, d, c # (a, b, t)
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?

L(b . A((a c) · t , V b)) =α L(a . A(V a , (b c) · t))
where c # (a, b, t)

A((b d)(a c) · t , V d) =α A(V d , (a d)(b c) · t))
where d # c, d, c # (a, b, t)

(b d)(a c) · t =α V d and V d =α (a d)(b c) · t
where d # c, d, c # (a, b, t)
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))
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where c # (a, b, t)
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(b d)(a c) · t =α V d and V d =α (a d)(b c) · t
where d # c, d, c # (a, b, t)

t =α V b and V a =α t
where d # c, d, c # (a, b, t)
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Ex. 1: does there exist t ∈ Σ(Term) with
L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))

(where a ̸= b)?

L(b . A((a c) · t , V b)) =α L(a . A(V a , (b c) · t))
where c # (a, b, t)

A((b d)(a c) · t , V d) =α A(V d , (a d)(b c) · t))
where d # c, d, c # (a, b, t)

(b d)(a c) · t =α V d and V d =α (a d)(b c) · t
where d # c, d, c # (a, b, t)

t =α V b and V a =α t
where d # c, d, c # (a, b, t)

V b =α V a

b = a
contradicting a ̸= b — so no such t can exist.
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Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?
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Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?

L(b . A(V b , t1)) =α L(a . A(V a , t2))
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A(V c , (b c) · t1)) =α A(V c , (a c) · t2))
where c # (a, b, t1, t2)
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Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?

L(b . A(V b , t1)) =α L(a . A(V a , t2))

A(V c , (b c) · t1)) =α A(V c , (a c) · t2))
where c # (a, b, t1, t2)

V c =α V c and (b c) · t1 =α (a c) · t2

where c # (a, b, t1, t2)

t1 = (b c)(a c) · t2[ = (a b)(b c) · t2]
where c # (a, b, (a b)(b c) · t2 , t2)
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Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?

L(b . A(V b , t1)) =α L(a . A(V a , t2))
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t1 = (b c)(a c) · t2[ = (a b)(b c) · t2]
where c # (a, b, (a b)(b c) · t2 , t2)

t1 = (a b)(b c) · t2[ = (a b) · t2]
where c # (a, b, t2) and b # t2
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Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?

L(b . A(V b , t1)) =α L(a . A(V a , t2))

A(V c , (b c) · t1)) =α A(V c , (a c) · t2))
where c # (a, b, t1, t2)

V c =α V c and (b c) · t1 =α (a c) · t2

where c # (a, b, t1, t2)

t1 = (b c)(a c) · t2[ = (a b)(b c) · t2]
where c # (a, b, (a b)(b c) · t2 , t2)

t1 = (a b)(b c) · t2[ = (a b) · t2]
where c # (a, b, t2) and b # t2

t1 = (a b) · t2, for any t2 with b # t2
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Examples of unification ‘mod α’
Ex. 1: does there exist a t ∈ Σ(Term) with

L(a . L(b . A(t , V b))) =α L(b . L(a . A(V a , t)))
(where a ̸= b)?

Ex. 2: do there exist t1, t2 ∈ Σ(Term) with
L(a . L(b . A(V b , t1))) =α L(a . L(a . A(V a , t2)))

(where a ̸= b)?

Can decide all such problems (over any nominal algebraic
signature) using the nominal unification algorithm
[Urban+AMP+Gabbay, TCS 323(2004)473–497] ! NOMU.

First, need to extend the synax of terms over a nominal
signature with variables. . .
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Σ(S) = raw terms over Σ of sort S

a ∈ A

a ∈ Σ(N)

t ∈ Σ(S) op : S → D

op t ∈ Σ(D) () ∈ Σ(1)

t1 ∈ Σ(S1) t2 ∈ Σ(S2)

t1 , t2 ∈ Σ(S1 , S2)

a ∈ A t ∈ Σ(S)

a . t ∈ Σ(N . S)

Each Σ(S) is a nominal set once equipped with the
obvious Perm A-action—any finite set of atoms
containing all those occurring in t supports t ∈ Σ(S).
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Open nominal terms

() unit a atomic names

t , t′ pairs a . t abstractions

op t constructed π ∗ X suspensions

π ∈ Perm A
X ranges over variables,

standing for unknown terms

E.g. L(a . A(V c , (a c) ∗ X))
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Equality & freshness

Equality of open terms is not just

t =α t′ α-equivalence
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Equality & freshness

Equality is in general hypothetical

∇ ⊢ t ≈ t′ hypothetical α-equivalence

finite set of freshness assumptions, a ≈! X, each with
intended meaning: ‘atomic name a will not occur

freely in any term substituted for X’

Intended meaning:

‘any closing substitution (= replacement of variables by
terms) satisfying ∇ makes t and t′ α-equivalent’
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Equality & freshness

Equality is in general hypothetical

∇ ⊢ t ≈ t′ hypothetical α-equivalence

Examples of valid judgements:

{b ≈! X} ⊢ a . X ≈ b . ((a b) ∗ X)

{a ≈! X, b ≈! X} ⊢ a . X ≈ b . X
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Equality & freshness

Also need freshness judgements

∇ ⊢ a ≈! t

Intended meaning:

‘any closing substitution satisfying ∇ makes t not
contain the atom a freely’

Examples of valid judgements:

{b ≈! X} ⊢ b ≈! a . X

{ } ⊢ a ≈! a . X
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Rules for ∇ ⊢ t ≈ t′

Excerpt
(see NOMU, or NSB chapter 12, for full details)
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Rules for ∇ ⊢ t ≈ t′

∇ ⊢ t ≈ t′

∇ ⊢ a . t ≈ a . t′

a ̸= a′ ∇ ⊢ t ≈ (a a′)∗t′ ∇ ⊢ a ≈! t′

∇ ⊢ a . t ≈ a′ . t′
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Rules for ∇ ⊢ t ≈ t′

∇ ⊢ t ≈ t′

∇ ⊢ a . t ≈ a . t′

a ̸= a′ ∇ ⊢ t ≈ (a a′)∗t′ ∇ ⊢ a ≈! t′

∇ ⊢ a . t ≈ a′ . t′

(a a′) ∗ t′ is defined by recursion on the structure of t′, pushing the
swap down through the structure, applying it to atoms and stopping

with subterms like ((a a′) ◦ π) ∗ X
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Rules for ∇ ⊢ t ≈ t′

(a ≈! X) ∈ ∇ for all a with π(a) ̸= π
′(a)

∇ ⊢ π ∗ X ≈ π
′ ∗ X

E.g.

{a ≈! X, c ≈! X} ⊢ (a c)(a b) ∗ X ≈ (b c) ∗ X

because

(a c)(a b) : a ,→ b (b c) : a ,→ a
b ,→ c b ,→ c
c ,→ a c ,→ b

disagree at a and c.
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Rules for ∇ ⊢ a ≈! t

(Excerpt)

a ̸= a′

∇ ⊢ a ≈! a′

∇ ⊢ a ≈! a . t

a ̸= a′ ∇ ⊢ a ≈! t

∇ ⊢ a ≈! a′ . t

(π
−1 a ≈! X) ∈ ∇

∇ ⊢ a ≈! π ∗ X
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Correctness

[NOMU, Proposition 2.16]

Theorem. ≈ is an equivalence relation and agrees with
=α on ground terms: if t and t′ contain no variables
then

∅ ⊢ t ≈ t′ is valid iff t =α t′.

Furthermore

∅ ⊢ a ≈! t is valid iff a /∈ fn(t).

Lecture 8 13/20



Substitution
Substitutions σ are finite maps from variables to terms,
[X1 := t1, . . . , Xn := tn].

Applying a substitution to a term: σ t = result of
replacing variables in t with terms according to σ,
carrying out any permutations of atomic names that are
generated.

E.g. if σ = [X := A(V b , Y)], then

σ (L(a . (a b) ∗ X)) = L(a . (a b) ∗ A(V b , Y))

= L(a . A(V a , (a b) ∗ Y))
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Equational & freshness problems

An equational problem t ?≈? t′ is solved by

" a substitution σ, plus
" a set of freshness assumptions ∇

so that ∇ ⊢ σ t ≈ σ t′.
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Equational & freshness problems

An equational problem t ?≈? t′ is solved by

" a substitution σ, plus
" a set of freshness assumptions ∇

so that ∇ ⊢ σ t ≈ σ t′.

Solving equations may entail solving freshness problems.
E.g. assuming that a ̸= a′, then L(a . t) ?≈? L(a′ . t′)
can only be solved if

t ?≈? (a a′) ∗ t′ and a ≈! ? t′

can be solved.
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Equational & freshness problems

An equational problem t ?≈? t′ is solved by

" a substitution σ, plus
" a set of freshness assumptions ∇

so that ∇ ⊢ σ t ≈ σ t′.

A freshness problem a ≈! ? t is solved by

" a substitution σ, plus
" a set of freshness assumptions ∇

so that ∇ ⊢ a ≈! σ t.
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Existence of MGUs
Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (σ,∇), and returns a most general one if
it does.

straightforward definition, omitted
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Existence of MGUs
Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (σ,∇), and returns a most general one if
it does.

Algorithm first reduces all the equations to ‘solved form’ (creating a
substitution), possibly generating extra freshness problems, and then
solves all the freshness problems (easy).

(See [NOMU, Sect. 3].)
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{L(a . L(b . A(V b , X))) ?≈? L(a . L(a . A(V a , Y)))}

(
id
→)3 {b . A(V b , X) ?≈? a . A(V a , Y)}

id
→ {A(V b , X) ?≈? A(V b , (b a) ∗ Y), b ≈! ? A(V a , Y)}

(
id
→)3 {X ?≈? (b a) ∗ Y , b ≈! ? A(V a , Y)}

[X :=(b a)∗Y]
→ {b ≈! ? A(V a , Y)}

∅
→ {b ≈! ? V a, b ≈! ? Y}

(
∅
→)2 {b ≈! ? Y}

{(b≈! Y)}
→ ∅
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{L(a . L(b . A(V b , X))) ?≈? L(a . L(a . A(V a , Y)))}

(
id
→)3 {b . A(V b , X) ?≈? a . A(V a , Y)}

id
→ {A(V b , X) ?≈? A(V b , (b a) ∗ Y), b ≈! ? A(V a , Y)}

(
id
→)3 {X ?≈? (b a) ∗ Y , b ≈! ? A(V a , Y)}

[X :=(b a)∗Y]
→ {b ≈! ? A(V a , Y)}

∅
→ {b ≈! ? V a, b ≈! ? Y}

(
∅
→)2 {b ≈! ? Y}

{(b≈! Y)}
→ ∅

most general solution = [X := (b a) ∗ Y], {(b ≈! Y)}
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Existence of MGUs
Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (σ,∇), and returns a most general one if
it does.

" Current best NOMU algorithm is quadratic [Levy & Villaret,
Proc. RTA 2010].

" NOMU is (quadratically) inter-reducible with Dale Miller’s
higher-order pattern unification, which uses variables that
depend on names X(a1, . . . , an) rather than NOMU’s
variables that are fresh for names ({a1, . . . , an} ≈! X).
(Higher-order patterns form a subset of Church’s simply typed
λ-calculus.)
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Other applications of nominal sets

" Computational logic
" Higher-order logic: Urban & Berghofer’s Nominal

package for the interactive theorem-prover Isabelle/HOL.
" Equational logic: rewriting for nominal terms

[Fernandez+Gabbay+Calves+· · · ]
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Other applications of nominal sets

" Computational logic
" Higher-order logic: Urban & Berghofer’s Nominal

package for the interactive theorem-prover Isabelle/HOL.
" Equational logic: rewriting for nominal terms

[Fernandez+Gabbay+Calves+· · · ]
" Automata theory & verification

" HD-automata [Montanari el al]
" fresh-register automata [Tzevelekos]
" orbit-finite computation theory [Bojańczyk et al]
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Other applications of nominal sets

" Homotopy Type Theory (HoTT)
Cubical sets [Bezem-Coquand-Huber] model of
Voevodsky’s axiom of univalence makes use of
nominal sets equipped with an operation of
substitution x ,→ x(i/a) where i ∈ {0, 1}.

" names are names of directions (cartesian axes)
(so e.g., if an object has support {a, b, c} it is 3-dimensional)

" freshness (a # x) = degeneracy (x(i/a) = x)
" identity types are modelled by name-abstraction: ⟨a⟩x is

a proof that x(0/a) is equal to x(1/a).

HoTT and univalence is about (computable) mathematical foundations (a topic
no longer very popular with mathematicians). That’s where the mathematics of
nominal sets came from. . .
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Impact can take a long time

The mathematics behind nominal sets goes back a long way. . .

Abraham Fraenkel, Der Begriff “definit” und die
Unabhängigkeit des Auswahlsaxioms, Sitzungsberichte der
Preussischen Akademie der Wissenschaften,
Physikalisch-mathematische Klasse (1922), 253–257.

Andrzej Mostowski, Uber die Unabhängigkeit des
Wohlordnungssatzes vom Ordnungsprinzip, Fundamenta
Mathematicae 32 (1939), 201–252.
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Impact can take a long time

The mathematics behind nominal sets goes back a long way. . .

. . . and it’s still too early to tell what will be the impact
of the applications of it to CS developed over the last 15
years.
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