Lecture 6: functional programming

ecture 6 1/16

>

Semantics: what’s it for?

Program verification.

» Implementation of existing programming languages.
» Design of new programming languages.

Lecture 6

“Why is it so hard to design a good programming
language? Naively, one might expect that a
straightforward extension of the conventional notation of
science and mathematics should provide a completely
adequate programming language. But the history of
language design has destroyed this illusion.

“The truth of the matter is that putting languages
together is a very tricky business. When one attempts to
combine language concepts, unexpected and
counterintuitive interactions arise. At this point, even the
most experienced designer's intuition must be buttressed
by a rigorous definition of what the language means.

"Of course, this is what programming language
semantics is all about.”

John Reynolds, 1990

FreshML

It aimed to provide, within an ML-style functional
programming language, higher-order structural recursion
that automatically respects a-conversion of bound
names, without anonymizing binding constructs.

Lecture 6 3

16

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using

(=) x (=), [A](=), etc.
+

“a-structural” recursion principle

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using

(=) x (=), [A](=), etc.
+

“a-structural” recursion principle

How to deal with its freshness side-conditions?

w-Structural recursion

For A-terms:

Theorem. fi € A-iX

Givenany X € Nom and { fo» € X X X - X st
fi € AXX-gX

(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
NfeA-xX (fa=fia
s.t. { fA(e1 ez) =f2(fe1,fez)
f(Aae) = fs(a,fe) ifa#(f,f2f3)

Can we avoid explicit reasoning about finite support, # and (FCB)
when computing ‘mod «'?

Want definition/computation to be separate from proving.

Lecture 6 4/16

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using
(=) x (=), [A](—), etc.
+
“a-structural” recursion principle

How to deal with freshness side-conditions?

Pure: type inference (Gabbay-P)
assertion-checking (Pottier)

Impure: dynamically allocated global names
(Shinwell-P)

n

- f
f(e1e2)
f(Aa.e) =

fra
fo(fe, fe)
f3(al’fe) if a # (fi, f2 f2)

Z= Aa’.e’

= fa(a, fe)

Q: how to get rid of this inconvenient proof obligation?

6/16

~n

= fha
flere) = fa(fey, fer)
f(Aa.e) = va.fs(a,fe) [a#(fi faf2)]

K: Aa’.e * =va'. f3(a’, f ') OK!
Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct va. (—) for names

~n

= fha
flere) = fa(fey, fer)
f(Aa.e) = va.fs(a,fe) [a# (fi faf2)]

Z= Aa’.e L =va'. f3(a’, f ') OK!
Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct va. (—) for names

which one?!

Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]"
» Used in Shinwell's Fresh OCam| = OCaml +

» name types and name-abstraction type former
» name-abstraction patterns
—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

Lecture 6 7/16

Sample Fresh OCaml code

(* syntax *)
type t;;
type var = t name;;

type term = Var of var | Lam of «var»term | App of term¥term;;

(* semantics *)

type sem = L of ((unit -> sem) -> sem)
and neu = V of var | A of neuxsem;;

(x reify : sem -> term *)
let rec reify d =
match d with L £ -> let x =
| Nn -> reifyn n
and reifyn n =
match n with V x -> Var x

| A(n’,d’) -> App(reifyn n’, reify d’);;

(* evals : (var * (unit -> sem))list -> term -> sem *)

let rec evals env t =

match t with Var x -> (match env with [-> N(V x)

(x?,v)::env -> if
| Lam(«x»t) -> L(function v -> evals ((x,v)::
| App(t1,t2) -> (match evals env tl with L f

(x eval : term -> sem *)
let rec eval t = evals [] t;;

(* norm : lam -> lam *)
let norm t = reify(eval t);;

Lecture 6

fresh in Lam(«x»(reify(f(function () -> N(V x)))))

x=x’ then v() else evals env (Var x))
env) t)
-> f(function () -> evals env t2)

-> N(A(n,evals env t2)));;

8/16

Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]"
» Used in Shinwell's Fresh OCaml = OCaml +

» name types and name-abstraction type former
» name-abstraction patterns
—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

Lecture 6 9/16

Dynamic allocation

» Stateful: va.t means “add a fresh name a’ to the
current state and return t[a’/a]".

Statefulness disrupts familiar mathematical properties of
pure datatypes. So we will try to reject it in favour of. ..

Odersky’s va. (—)

[M. Odersky, A Functional Theory of Local Names, POPL'94]

» Unfamiliar—apparently not used in practice (so far).

» Pure equational calculus, in which local scopes
‘intrude’ rather than extrude (as per dynamic

allocation):
va.(Ax.t) = Ax.(va.t) [a # x]
va.(t,t') = (va.t,va.t')

» New: a straightforward semantics using nominal
sets equipped with a ‘name-restriction operation’. . .

Lecture 6 10/16

Name-restriction

A name-restriction operation on a nominal set X is a
morphism (—)\(—) € Nom(A X X, X) satisfying
» a#a\x
»aftx = a\x =x

> a\(b\x) = b\(a\x)

Equivalently, a morphism p : [A]X — X making

X ——[A]X [A][A]X [A][A]X
[AlpY V[Alp
" kp [A]X [A]X
X Prsx<°

commute, where x x = (a)x for some (or indeed any) a # x; and where
6({a)(a")x) = (a’)(a)x.

Lecture 6

11/16

{ f1 € A*st
Givenany X € Nom and ¢ fo € X X X - X st
fi € AXX-g X
(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
E|!f€A—>fSX{ ~ fa=fia
.t]’;(61 ez) =f2(f e},fez)
f(Aa.e) = fs(a, fe) ifat (fi, fofs)

If X has a name restriction operation (—)\ (—), we can
trivially satisfy (FCB) by using a\ f3(a, x) in place of

f3(a, x).

Lecture 6 12/16

fl S A*st
Givenany X € Nom and ¢ fo € X X X - X
fi € AXX-g X

and a restriction operation (—)\(—) on X,
NfeA-xX (fa=fia
t.§ f(erex) = fa(fes, fez2)
f(Aa.e) =a\fs(a, fe)

Is requiring X to carry a name-restriction operation
much of a hindrance for applications?

Not much. ..

Lecture 6 12/16

Examples of name-restriction

» For IN: a\n £

ure 6 13/16

Examples of name-restriction

» For IN: a\n £

» For A’ & A @ {anon}:

a\a 2 anon
a\a’ = a' ifa #a
a\anon = anon

ure 6 13/16

Examples of name-restriction

» For IN: a\n 2 n

» For A’ & A @ {anon}:

a\t = t[anon/a]

» For A’ = {t=z=Va|A(t,t) |L(a.t) | anon}/=,:
a\[t], = [t[anon/a]],

ure 6 13/16

Examples of name-restriction

v

For IN: a\n £ n

v

For A’ = A & {anon}:

a\t = t[anon/a]

v

For A’ 2 {t:=Va|A(t,t) | L(a.t) | anon}/=,:
a\[t], = [t[anon/a]],

v

Nominal sets with name-restriction are closed under products,
coproducts, name-abstraction and exponentiation by a nominal
set.

Lecture 6 13/16

Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, JFP 21(2011)235-286]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name, with terms for
> names, a : Name (a € A)
» equality test, _ =_ : Name — Name — Bool
) t: T
> name-swapping, ———————
PPINE: avayt: T

» locally scoped nameszi binds a
Y P va.t: T ()

with Odersky-style computation rules, e.g.

va.Ax.t = Ax.va.t

Lecture 6 14/16

Aav-Calculus

[AMP, Structural Recursion with Locally Scoped Names, JFP 21(2011)235-286]

is standard simply-typed A-calculus with booleans and
products, extended with:

» type of names, Name
» name-abstraction types, Name. T, with terms for
t: T
> name-abstraction, (binds a)
aa.t:Name.T

t:Name.T t'. T
7 (binds a & x in t/)

» unbinding,

leta.x=tint :
with computation rule that uses local scoping

leta.x=aa.tint’ = va. (t'[t/x])

Lecture 6 14/16

Aav-Calculus

Denotational semantics. Aav-calculus has a
straightforward interpretation in Nom that is sound for
the computation rules—types denote nominal sets
equipped with a name-restriction operation:

[Bool] = {true,false}
[Name] = A & {anon}
[TxT] = [T] X [T'] >—[va.a]
[T-T] = [T] - [T]
[Name.T] = [A][T]

See [NSB, Section 9.4].

Lecture 6 15/16

Aav-calculus as a FP’ language

To do: revisit FreshML using Odersky-style local names
rather than dynamic allocation (cf. [Lésch+AMP, POPL 2013]

Lecture 6 16/16

‘Nominal Agda’ (???)

Can the Aav-calculus be extended from simple to dependent types?

names Var : Set

data Term : Set where --(possibly open) A-terms mod «
V : Var -> Term --variable
A : (Term X Term)-> Term --application term
L : (Var . Term) -> Term --A-abstraction

/_ : Term -> Var -> Term -> Term --capture-avoiding substitution

Et / x)(V x’) = if x = ¥’ then t else V x’
t /WG ,) = A / x)t, &/ x)t")
t/0O@QE .) =LE . &/ 0t

Refl : t ==t

data _==_ (t : Term) : Term -> Set where --intensional equality

Lecture 6 16/16

‘Nominal Agda’ (???)

Can the Aav-calculus be extended from simple to dependent types?

names Var : Set

data Term : Set where
V : Var -> Term
A : (Term X Term)-> Term
L : (Var . Term) -> Term

/ : Term -> Var -> Term -> Term
(t / x)(V x') = if x = ¥’ then t else V x’

--(possibly open) A-terms mod «
--variable

--application term
--A-abstraction

--capture-avoiding substitution

t / QAR , ")) = At / x)t, &/ x)t

t/0O@QE .) =LE . &/ 0t
data _==_ (t : Term) : Term -> Set where
Refl : t ==t

eg : (x x' : Var) ->
v x /xHQLx .
eg x ¥ = {! 1}

Vx))==L& .Vx

Lecture 6

--intensional equality
--is term equality mod «

——(Axx")[x/x'] = Ax' x

16/16

	Lecture 6: functional programming

