Lecture 3: category of nominal sets

Category of nominal sets, Nom

- objects $X \in Nom$ are nominal sets
- ► morphisms f ∈ Nom(X, Y) are functions f ∈ Y^X that are equivariant:

 $(\forall \pi \in \operatorname{Perm} \mathbb{A}, x \in X) \ \pi \cdot (f x) = f(\pi \cdot x)$

for all $\pi \in \operatorname{Perm} \mathbb{A}$, $x \in X$.

(Clearly these are closed under composition and include identity functions—so we do get a category.)

E.g. Nom $(\mathbb{A}, \mathbb{A}) = ?$

Category of nominal sets, Nom

- objects $X \in Nom$ are nominal sets
- ► morphisms f ∈ Nom(X, Y) are functions f ∈ Y^X that are equivariant:

 $(\forall \pi \in \operatorname{Perm} \mathbb{A}, x \in X) \ \pi \cdot (f x) = f(\pi \cdot x)$

for all $\pi \in \operatorname{Perm} \mathbb{A}$, $x \in X$.

(Clearly these are closed under composition and include identity functions—so we do get a category.)

E.g. Nom(\mathbb{A} , \mathbb{A}) = { $id_{\mathbb{A}}$ } because...

Lemma 1. If $f \in Nom(X, Y)$ and $x \in X$, then $supp(f x) \subseteq supp x$

For example, if $f \in Nom(\mathbb{A}, \mathbb{A})$, then for any $a \in \mathbb{A}$

 ${fa} = supp(fa) \subseteq supp a = {a}$

so that f a = a. Hence $f = id_{\mathbb{A}}$.

Lemma 1. If $f \in Nom(X, Y)$ and $x \in X$, then $supp(f x) \subseteq supp x$

Proof. Suppose A supports x in X.

So for any $\pi \in \operatorname{Perm} \mathbb{A}$, if $(\forall a \in A) \ \pi \ a = a$, then $\pi \cdot x = x$ and hence $\pi \cdot (f x) = f(\pi \cdot x) = f x$.

Hence A also supports f x in Y.

Taking A = supp x, we get that supp x supports f x, so supp(f x) is contained in supp x. \Box

Finite products: $X_1 \times \cdots \times X_n$ is given by cartesian product of sets with **Perm** \mathbb{A} -action

$$\pi \cdot (x_1,\ldots,x_n) \triangleq (\pi \cdot x_1,\ldots,\pi \cdot x_n)$$

which satisfies

 $supp(x,\ldots,x_n) = (supp x_1) \cup \cdots \cup (supp x_n)$

(Exercise)

Exponentials: given $X, Y \in Nom$, we get a **Perm** A-action on the set Y^X of functions:

$$\pi \cdot f riangleq \lambda(x \in X) o \pi \cdot (f(\pi^{-1} \cdot x))$$

Why this definition? Whatever π f is, want application to be equivariant $\pi \cdot (f \propto) = (\pi \cdot f)(\pi \cdot \chi)$ So we are forced to get $(\pi \cdot f) \propto = (\pi \cdot f)(\pi \cdot (\pi^{!} \cdot \chi)) = \pi \cdot (f(\pi^{!} \cdot \chi))$

Exponentials: given $X, Y \in Nom$, we get a **Perm** A-action on the set Y^X of functions:

 $\pi \cdot f riangleq \lambda(x \in X) o \pi \cdot (f(\pi^{-1} \cdot x))$

Not every $f \in Y^X$ need have finite support wrt this action: let $X \rightarrow_{fs} Y$ be the subset of ones that do.

Exponentials: given $X, Y \in Nom$, we get a **Perm** A-action on the set Y^X of functions:

 $\pi \cdot f riangleq \lambda(x \in X) o \pi \cdot (f(\pi^{-1} \cdot x))$

Not every $f \in Y^X$ need have finite support wrt this action: let $X \rightarrow_{fs} Y$ be the subset of ones that do.

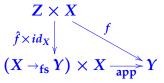
E.g. given $a \in \mathbb{A}$, $K_a \triangleq \lambda(x \in \mathbb{A}) \to a$ is in $\mathbb{A} \to_{\mathrm{fs}} \mathbb{A}$, because it is supported by $\{a\}$, since

 $(\pi \cdot K_a) x = \pi \cdot (K_a(\pi^{-1} \cdot x)) = \pi \cdot a = \pi a$

and hence $\pi \cdot K_a = K_{\pi a}$.

Exponential of $X, Y \in Nom$ is $X \rightarrow_{fs} Y$ plus equivariant function $app: (X \rightarrow_{fs} Y) \times X \rightarrow Y$ app(f, x) = f x

Given $f \in Nom(Z \times X, Y)$, the unique $\hat{f} \in Nom(Z, X \rightarrow_{fs} Y)$ making



commute is given by currying: $\hat{f} z = \lambda(x \in X) \rightarrow f(z, x)$. (Exercise)

Nom is a model of Church's higher order logic

[**Nom** is categorically equivalent to a well-known Boolean topos, called the Schanuel topos.]

Nom is a model of Church's higher order logic

Subobject classifier: $\Omega = \{ \text{true, false} \} \cong 1 + 1$ with trivial Perm A-action: $\pi \cdot b \triangleq b$ (so *supp* $b = \emptyset$). Power objects: $X \to_{fs} \Omega \cong P_{fs} X$, the set of subsets $S \subseteq X$ that are finitely supported w.r.t. the Perm A-action

 $\pi \cdot S \triangleq \{\pi \cdot x \mid x \in S\}$

Nom is a model of Church's higher order logic

Coproducts are given by disjoint union.

Natural number object: $\mathbb{N} = \{0, 1, 2, ...\}$ with trivial **Perm** \mathbb{A} -action: $\pi \cdot n \triangleq n$ (so *supp* $n = \emptyset$).

Nom $\not\models$ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation, $\varepsilon x \cdot \varphi(x)$ satisfying

 $(\forall x:X) \varphi(x) \Rightarrow \varphi(\varepsilon x.\varphi(x))$

Theorem 1. There is no equivariant function $c: \{S \in P_{fs} \mathbb{A} \mid S \neq \emptyset\} \to \mathbb{A}$ satisfying $c(S) \in S$ for all non-empty $S \in P_{fs} \mathbb{A}$.

Proof. Suppose there were such a *c*. Putting $a \triangleq c \mathbb{A}$ and picking some $b \in \mathbb{A} - \{a\}$, we get a contradiction to $a \neq b$:

 $a = c \mathbb{A} = c((a \ b) \cdot \mathbb{A}) = (a \ b) \cdot c \mathbb{A} = (a \ b) \cdot a = b$

Nom $\not\models$ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation, $\varepsilon x \cdot \varphi(x)$ satisfying

 $(\forall x : X) \varphi(x) \Rightarrow \varphi(\varepsilon x.\varphi(x))$

In fact **Nom** does not model even very weak forms of choice, such as Dependent Choice.

The nominal set of names

Recall that $\mathbb A$ is a nominal set once equipped with the action $\pi \cdot a = \pi(a)$

which satisfies $supp a = \{a\}$.

Although $\mathbb{A} \in \mathbf{Set}$ is a countable, \mathbb{A} is not isomorphic to \mathbb{N} in **Nom**. For any $f \in \mathbb{N} \to_{\mathbf{fs}} \mathbb{A}$ has to satisfy

$\{fn\} = supp(app(f,n)) \subseteq$ $supp(f,n) = supp f \cup supp n = supp f$

for all $n \in \mathbb{N}$, and so f cannot be surjective.