MPhil ACS, CST Part III 2013/14 Nominal Sets and their Applications Exercise Sheet

[* indicates a harder exercise]

Exercise 1. Let Tr, var : $Tr \to P_f \mathbb{A}$ and $=_{\alpha} \subseteq Tr \times Tr$ be as in Lecture 1.

- (i) Prove by induction on the structure of abstract syntax trees *t* that the action $(-) \cdot (-)$: Perm $\mathbb{A} \times Tr \to Tr$ defined in Lecture 2 satisfies $var(\pi \cdot t) = \{\pi a \mid a \in var t\}$.
- (ii) Show that for any $a, a' \in \mathbb{A}$ and $\pi \in \operatorname{Perm} \mathbb{A}$, $\pi \circ (a a') = (\pi a \pi a') \circ \pi$ in $\operatorname{Perm} \mathbb{A}$.
- (iii) Hence prove by induction on the derivation of $t =_{\alpha} t'$ from the rules inductively defining $=_{\alpha}$ that if $t =_{\alpha} t'$, then $\pi \cdot t =_{\alpha} \pi \cdot t'$ holds for any $\pi \in \text{Perm } \mathbb{A}$.

[If you are not confident about proofs by structural induction and rule-based induction, why not try formulating your proofs in Agda, Coq or Isabelle/HOL.]

Exercise 2. Use Exercise 1 to show that if $(a \ b) \cdot t =_{\alpha} (a' \ b) \cdot t'$ holds for some $b \in \mathbb{A} - (\{a, a'\} \cup \operatorname{var}(t \ t'))$, then it holds for any such b. Use this to prove that $=_{\alpha}$ is an equivalence relation.

Exercise 3. The finite set fv *t* of free variables of $t \in Tr$ is recursively defined by:

$$fv(Va) = \{a\}$$

$$fv(A(t,t')) = (fvt) \cup fvt')$$

$$fv(L(a,t)) = (fvt) - \{a\}.$$

- (i) Prove that for all $\pi \in \text{Perm } \mathbb{A}$ and $t \in Tr$, $\text{fv}(\pi \cdot t) = \{\pi a \mid a \in \text{fv } t\}$.
- (ii)* Prove that for all $t \in Tr$, $((\forall a \in \text{fv } t) \pi a = a) \Leftrightarrow \pi \cdot t =_{\alpha} t$. [Hint: proceed by induction on the size |t| of abstract syntax trees t, where $|\forall a| = 0$, |A(t,t')| = |t| + |t'| + 1 and |L(a,t)| = |t| + 2, say. Note that $|(a a') \cdot t| = |t|$, so that in the induction step for L(a, t) one can suitably freshen the bound variable, $L(a, t) =_{\alpha}$ $L(a', (a a') \cdot t)$, and apply the induction hypothesis to $(a a') \cdot t$.]
- (iii) Deduce that the smallest support of the α -equivalence class $[t]_{\alpha}$ in $\Lambda = \{[t]_{\alpha} \mid t \in Tr\}$ is fv *t*.
- **Exercise 4.** (i) Show that in the category **Nom** the product of two objects *X* and *Y* is given by their cartesian product as sets $X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$ with Perm A-action $\pi \cdot (x, y) = (\pi \cdot x, \pi \cdot y)$.
 - (ii) What is the terminal object 1 in **Nom**?
- (iii) Prove that for all $(x, y) \in X \times Y$, $supp(x, y) = supp x \cup supp y$.

Exercise 5. If $X \in Nom$, $x \in X$ and $A \in P_f \mathbb{A}$, show that for all $\pi \in Perm \mathbb{A}$ that if A supports x, then $\pi \cdot A \triangleq \{\pi a \mid a \in A\}$ supports $\pi \cdot x$. Deduce that $supp(\pi \cdot x) = \pi \cdot (supp x)$.

Exercise 6. Show that $f \in Nom(X, Y)$ is an isomorphism iff the function f is not only equivariant, but also a bijection.

Exercise 7. Continuing Exercise 4, show that **Nom** is a cartesian closed category. To do this, show that the exponential of two nominal sets *X* and *Y* is given by the nominal set $X \rightarrow_{\text{fs}} Y$ of finitely supported functions defined in Lecture 3.

Exercise 8. Show that the name abstraction functor $[\mathbb{A}](-)$: **Nom** \rightarrow **Nom** is right adjoint to the functor $(-) * \mathbb{A} : \mathbf{Nom} \rightarrow \mathbf{Nom}$ which sends each $X \in \mathbf{Nom}$ to

$$X * \mathbb{A} \triangleq \{ (x, a) \in X \times \mathbb{A} \mid a \# x \}$$

(with Perm A-action inherited from the product $X \times A$) and each $f \in Nom(X, Y)$ to $f * A \in Nom(X * A, Y * A)$, given by (f * A)(x, a) = (f x, a).

To do this, first show that there is a well-defined equivariant function $(-) @ (-) : ([\mathbb{A}]X) * \mathbb{A} \to X$ satisfying $(\langle a \rangle x) @ b = (a \ b) \cdot x$. This is called *concretion* and is the counit of the adjunction: show that if $f \in \mathbf{Nom}(Y * \mathbb{A}, X)$, then there is a unique morphism $\hat{f} \in \mathbf{Nom}(Y, [\mathbb{A}]X)$ satisfying $f(y, a) = (\hat{f}y) @ a$, for all $(y, a) \in Y * \mathbb{A}$.

Exercise 9. Coproducts in **Nom** are given by disjoint union, $X + Y \triangleq \{(0, x) \mid x \in X\} \cup \{(1, y) \mid y \in Y\}$ with Perm A-action given by $\begin{cases} \pi \cdot (0, x) = (0, \pi \cdot x) \\ \pi \cdot (1, y) = (1, \pi \cdot y). \end{cases}$ Show that $[\mathbb{A}](X + Y)$ is isomorphic to $([\mathbb{A}]X) + ([\mathbb{A}]Y)$.

Exercise 10. Show that [A]A is isomorphic in the category **Nom** to the coproduct A + 1.

Exercise 11. For any discrete nominal set *S* (cf. Lecture 2), show that [A]S is isomorphic to *S* in **Nom**.

Exercise 12. Show that for any $X, Y \in Nom$, $[\mathbb{A}](X \times Y)$ is isomorphic to $([\mathbb{A}]X) \times ([\mathbb{A}]Y)$.

Exercise^{*}**13.** Show that for any $X, Y \in \mathbf{Nom}$, $[\mathbb{A}](X \to_{fs} Y)$ is isomorphic to $([\mathbb{A}]X) \to_{fs} ([\mathbb{A}]Y)$.

Exercise 14. Suppose $\varphi(a)$ and $\varphi'(a)$ are properties of atomic names $a \in \mathbb{A}$ whose extensions $\{a \mid \varphi(a)\}$ and $\{a \mid \varphi'(a)\}$ give finitely supported subsets of \mathbb{A} . Writing $(\mathbb{N}a) \varphi(a)$ to indicate that $\{a \mid \varphi(a)\}$ is a cofinite set of atoms (cf. Lecture 7), show that this 'freshness quantifier' has the following properties:

(i)
$$\neg(\mathsf{M}a) \varphi(a) \Leftrightarrow (\mathsf{M}a) \neg \varphi(a)$$
.

(ii)
$$((\mathsf{M}a) \varphi(a) \land (\mathsf{M}a) \varphi'(a)) \Leftrightarrow (\mathsf{M}a) (\varphi(a) \land \varphi'(a)).$$

- (iii) $((\mathsf{M}a) \varphi(a) \lor (\mathsf{M}a) \varphi'(a)) \Leftrightarrow (\mathsf{M}a) (\varphi(a) \lor \varphi'(a)).$
- (iv) $((\mathsf{M}a) \varphi(a) \Rightarrow (\mathsf{M}a) \varphi'(a)) \Leftrightarrow (\mathsf{M}a) (\varphi(a) \Rightarrow \varphi'(a)).$

If $X \in Nom$ and $\varphi(a, x)$ determines a finitely supported subset of $\mathbb{A} \times X$, what in general is the relationship between $(\exists x \in X)(\mathsf{M}a) \varphi(a, x)$ and $(\mathsf{M}a)(\exists x \in X) \varphi(a, x)$? And between $(\forall x \in X)(\mathsf{M}a) \varphi(a, x)$ and $(\mathsf{M}a)(\forall x \in X) \varphi(a, x)$?

Exercise 15. Use the α -structural recursion theorem for λ -terms from Lecture 5 to prove the following α -structural induction principle for the nominal set Λ of λ -terms modulo α -equivalence: if $P \in P_{fs}\Lambda$ satisfies

$$\begin{aligned} (\forall a \in \mathbb{A}) \ a \in P \\ & \land (\forall e_1, e_2 \in \Lambda) \ e_1 \in P \land e_2 \in P \Rightarrow e_1 e_2 \in P \\ & \land (\mathsf{V}a)(\forall e \in \Lambda) \ e \in P \Rightarrow \lambda a. \ e \in P \end{aligned}$$

then $(\forall e \in \Lambda) \ e \in P$. [Hint: for any nominal set *X*, $P_{fs}X$ is isomorphic to $X \rightarrow_{fs} 2$; so we can apply the recursion principle to functions from Λ to 2.]

Exercise 16. Show that a subset *S* of the nominal set \mathbb{A} is finitely supported iff it is either finite or cofinite (that is, its complement $\mathbb{A} - S$ is finite).

Exercise 17. (i) or each $X \in Nom$, show that

$$a \setminus S \triangleq \{x \in X \mid (\mathsf{M}a') (a a') \cdot x \in S\} \qquad (a \in \mathbb{A}, S \in \mathsf{P}_{\mathsf{fs}}X)$$

defines a name-restriction operation (Lecture 6) on $P_{fs}X$.

(ii) When $X = \mathbb{A}$, show that $a \setminus S = S - \{a\}$ if *S* is finite and $a \setminus S = S \cup \{a\}$ if *S* is cofinite (cf. Exercise 16).

Exercise*18. Show that if $(-)\setminus(-) \in \mathbf{Nom}(\mathbb{A} \times Y, Y)$ is a name-restriction operation on $Y \in \mathbf{Nom}$ (Lecture 6), then for any $X \in \mathbf{Nom}$, there is a name restriction operation $(-)\setminus_1(-)$ on $X \to_{fs} Y$ satisfying

$$a # x \Rightarrow (a \setminus f) x = a \setminus (f x)$$

for all $a \in \mathbb{A}$, $x \in X$ and $f \in X \rightarrow_{fs} Y$.