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Examples

name S ⊕, ⊗ 0 1

min_plus N min + 0
max_min N max min 0

name LD LC LK

min_plus Yes Yes No
max_min Yes No No

name definition LD

Widest Shortest-paths min_plus ~×max_min Yes
Shorest Widest-paths max_min ~×min_plus No

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 08T.G.Griffin c©2013 2 / 10



Shorest widest paths

(7, 1)

i j

(5, 1)

d

(10, 100)

node j prefers (10, 100) over (7, 1).
node i prefers (5, 2) over (5, 101).

(5, 1)⊗ ((10, 100)⊕ (7, 1)) = (5, 1)⊗ (10, 100) = (5, 101)

((5, 1)⊗ (10, 101))⊕ ((5, 1)⊗ (7, 1)) = (5, 101)⊕ (5, 2) = (5, 2)
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Something similar from inter-domain routing in the
global Internet

short path through a peer

customer provider

long path through a customer

i j d

j prefers long path though one of its customers
i prefers the shorter path
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Solving (some) equations

If A∗ exists , then L = A∗ solves the equation

L = AL⊕ I

and R = A∗ solves the equation

R = RA⊕ I.

Towards a “non classical” theory of algebraic path problems ...
If we weaken the axioms of the semiring (drop distributivity, for
example), could it be that we can find examples where A∗, L, and R
exist, but are all distinct?

Health warning : matrix multiplication over structures lacking
distributivity is not associative!
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Left-Local Optimality

Say that L is a left locally-optimal solution when

L = (A⊗ L)⊕ I.

That is, for i 6= j we have

L(i , j) =
⊕
q∈V

A(i , q)⊗ L(q, j)

L(i , j) is the best possible value given the values L(q, j), for all
out-neighbors q of source i .
Rows L(i , _) represents out-trees from i (think Bellman-Ford).
Columns L(_, i) represents in-trees to i .
Works well with hop-by-hop forwarding from i .
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Right-Local Optimality

Say that R is a right locally-optimal solution when

R = (R⊗ A)⊕ I.

That is, for i 6= j we have

R(i , j) =
⊕
q∈V

R(i , q)⊗ A(q, j)

R(i , j) is the best possible value given the values R(q, j), for all
in-neighbors q of destination j .
Rows L(i , _) represents out-trees from i (think Dijkstra).
Columns L(_, i) represents in-trees to i .
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With and Without Distributivity

With distributivity
For (bounded) semirings, the three optimality problems are essentially
the same — locally optimal solutions are globally optimal solutions.

A∗ = L = R

Without distributivity
It may be that A∗, L, and R exists but are all distinct.

Back and Forth

L = (A⊗ L)⊕ I ⇐⇒ LT = (LT⊗T AT )⊕ I

where ⊗T is matrix multiplication defined with a⊗T b = b ⊗ a
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(Distributed) Bellman-Ford can compute left-local
solutions1

A[0] = I
A[k+1] = (A⊗ Ak )⊕ I,

Bellman-ford algorithm must be modified to ensure only loop-free
paths are inspected.
(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
(S, ⊗, 1) is a monoid,
0 is the annihilator for ⊗,
1 is the annihilator for ⊕,
Left strictly inflationarity, L.S.INF : ∀a,b : a 6= 0 =⇒ a < a⊗ b
Here a ≤ b ≡ a = a⊕ b.

Convergence to a unique left-local solution is guaranteed. Currently no
polynomial bound is known on the number of iterations required.

1See dissertation of Alexander Gurney
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Right version ...

[0]A = I
[k+1]A = (kA⊗ A)⊕ I,

(algorithm must be modified to ensure only loop-free paths are
inspected)
(S, ⊕, 0) is a commutative, idempotent, and selective monoid,
(S, ⊗, 1) is a monoid,
0 is the annihilator for ⊗,
1 is the annihilator for ⊕,
Right strictly inflationarity, R.S.INF : ∀a,b : a 6= 0 =⇒ a < b ⊗ a
Here a ≤ b ≡ a = a⊕ b.

Convergence to a unique right-local solution is guaranteed. Currently
no polynomial bound is known on the number of iterations required.
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Example

1

2

34 5

(5,1)

(5,1)

(5,4)

(5,1)

(10,5)

(10,1)

(5,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Left-locally optimal paths to node 2

1

2

34 5
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Right-locally optimal paths to node 2

1

2

34 5

5→ 2

1,3,4→ 2

5→ 23→ 2

4→ 2

4→ 23→ 2

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 08T.G.Griffin c©2013 13 / 10


