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An observation concerning 0-stable semirings
Suppose that p; is a path from i to k, p- is a path from k to k (a loop),
and ps is a path from k to j.

Claim

If the graph is weighted over a 0-stable semiring (1 @a=a® 1 =1),
then
w(p1ps) <& W(P1P2Ps)-

In other words, for such semirings it does not pay to go around loops
seeking a minimum path weight.

w(p1ps) & w(p1p2ps) = (W(p1) ® w(ps)) & (W(p1) @ w(p2) ® w(ps))
w

w

(
(
= w(

p1) @ (1@ w(p2)) © w(ps)
p1) ©1® w(ps)
p1) ® w(ps)

p1P3)

w
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Shortest paths example, (N*°, min, +)

The adjacency matrix
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Note that the longest shortest pathis (1, 0, 2, 3) of length 3 and
weight 7.
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(min, 4-) example

Our theorem tells us that A* = A(™=1) = A(4)

o 1 2 3 4

o[0 2 1 5 4

112 03 7 4

A =A® =1 min Amin A2mnASmnA*=2|1 3 0 4 3
3|5 7 40 7

4|4 4370
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(min, 4-) example

0 1 2 3 4 0 1 2 3 4

0o 2 1 6 o o[ 8 4 3 8 10

1 2 oo 5 o0 4 1 4 8 7 7 6

A = 2|1 5 oo 4 3 A = 3 78 6 5
3 6 oo 4 oo 3 8 7 6 11 10

4 oo 4 3 o0 o0 4110 6 5 10 12

0O 1 2 3 4 0 1 2 3 4

o[2 6 7 5 4 o[4 8 9 7 6

116 4 3 8 8 118 6 5 10 10

A2 = 2|7 3279 A* = 219 5 4 9 11
3|5 87 87 3|7 10 9 10 9

414 8 9 7 6 4 |6 10 11 9 8

First appearér?ce of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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A “better” way — our basic algorithm

A0 — |
Ak — AAK o

Lemma
A — A 1A' A2 - AK
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back to (min, +) example

3 0 4 3

3 0 4 3

1

7146
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Anoteon Avs. A9l

Lemma 6.0
If © is idempotent, then

(A = Ak,

Proof. Base case: When k = 0 both expressions are I.
Assume (A @ 1)k = A(K), Then

(Aa Dkt = (Aal)(A® )k

(A @ )AK)

AAKK) ¢ A(K)
AloAD--- oA o Al
= ApA2q...0 AT g AW
— Ak+1 @A(k)

—  Alk+1)
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Solving (some) equations
Theorem 6.1
If A is g-stable, then X = A* solves the equations

X=AXal
and
X=XAal |
For example,
A = A@
— Alg+1)

AT A0 .. . oA’ ABI
AAacAT T .. .aAa]) ol
AA@) g1
= AA* ol
Note that if we replace the assumption “A is g-stable” with “A* exists,”

then we require that ® distributes over infinite sums.
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A more general result

Theorem Left-Right
If A is g-stable, then X = A*B solves the equations

X=AX®B
and X = BA* solves
X =XA a3 B. |
For example,
A'B = AB
— Ale+)B

= (Ao A ... oA’ AIB
= (A" oAe... oA’ A)BDB
= AA0A"®..0ADI)BaB
= AA@B)¢B
= A(A*B)&B
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Use Theorem Left-Right to Work this out

Theorem (John Conway, 1971)

If
A1 | A2 )
A — ) )
( Asq | Ao

then A* can be written as

(A1 8 A12A5 A1) | A} A1 (A2 @ Ag AT (A p)*
A5 oAz 1(A11 @ A 2AS A2 1)" | (A22 @ Az 1AT 1A 2)*

v
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The “best” solution

If Ais g-stable and g < k, then

Suppose Y is a matrix such that
} Y =AY ¢ A*
Y=AY®I
Y = AYal Vg A
A'Y & A and if & is idempotent, then
= A((AYa ) al
= A2YoAql Y<tA
_ A2 1
B A Y_@A( ) So A* is the largest solution. What
s does this mean in terms of the sp
= Aty g AW semiring?
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Example with zero weighted cycles using sp semiring

A* (= A@lin this case) solves
/ X=XAal
10
But so does this (dishonest) matrix!
0

0 0o 1 2
o[ 0 9 9
10 F = 1|1 00
\ 2 o0 0 O
For example :
o 1 2
0 co 10 10 (FA)(0,1)
A = o0 oo 0 = min F(0,q9) +A(qg,1)
2l oo 0 o0 qe_{0,1,2}
= min(0+ 10,9 + 00,9+ 0)
=9
= F(0,1)
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Recall our basic iterative algorithm

A0 — |
A+ — AAK o

A closer look ...
ARGy = 10, ) & @D AU, u)AR (u,))
u

= i )e P Al wAR(u,))

(i,u)eE

This is the basis of distributed Bellman-Ford algorithms — a node i
computes routes to a destination j by applying its link weights to the
routes learned from its immediate neighbors. It then makes these
routes available to its neighbors and the process continues...
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What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by A) can
change and the state of the computation can start in an arbitrary state
(with respect to a new A).

A — M
AU = AAl g1

Lemma 6.4
For 1 < k,
Al — AkM g A

If A is g-stable and g < k, then

Al — A“M @ A
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RIP-like example — counting to convergence (1)

AN AT
S N

Adjacency matrix Aq Adjacency matrix Ao
o 1 2 3 o 1 2 3

0 [ oo 1 1 oo 0 [0 1 1 o0

1 1 oo 1 A1 1 1 oo 1 o©

2 1 1 o~ 10 2 1 1 oo 10

3| oo 1 10 o0 3| oo oo 10 oo

See RFC 1058.
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RIP-like example — counting to convergence (2)

AN, AT
Lo b

The solution A} The solution A3
o1 2 3 o 1 2 3
o0 1 1 2 of 0 1 1 11
11011 {1 0 1 11
2|1 10 2 211 1 0 10
32120 3 11 11 10 0
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RIP-like example — counting to convergence (3)

The scenario: we arrived at A7, but then links {(1,3), (3,1)} fail. So
we start iterating using the new matrix Ao.

Let Bk represent A2§Vl|(>, where M = Aj.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2013 18/46



)

4

(

RIP-like example — counting to convergence

10

11

o ~ N ™ - N ™ - N ™
I I I
™ < Lo
m m [11]
[S2] M AN O Mmoo
1
N~NO a+~r-0Q -o2
— O QN
- O ~
o - ~—
O+~ QA AR - T
L 1
SO -~ N ™ — N ™ - AN ™
I I I
o — [
m m m
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RIP-like example — counting to convergence (5)

o 1 2 3 o 1 2 3
o0 1 1 7 ol 0 1 1 107
11101 7 111 0 1 10
I36_21107 Bg‘211010
32120 3 [ 11 11 10 0 |
0 1 2 3 o 1 2 3
ol 0 1 1 8] ol 0 1 1 117
111 0 1 8 111 0 1 11
Bz = ,11 1 0 8 Bo = , 11 1 0 10
3 [ 11 11 10 0 | 3 [ 11 11 10 0 |
0 1 2 3
o[ 0O 1 1 97
11 0 1 9
Bs = , 1 1 0 9
3 [ 11 11 10 0 |
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RIP-like example — counting to infinity (1)

1 1 1 1
The solution A} The solution Aj
01 2 3 o 1 2 3
o[0 1 1 2 o[ 0 1 1 o
1.0 11 111 0 1 o0
2|1 10 2 2| 1 1 0 o
312120 300 o0 oo O

Now let Bk represent A3|<vl|(>’ where M = A7.
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RIP-like example — counting to infinity (2)

0o 1 2 3
o[0 1 1 2 o 1 2 3
Bp = | ] ?;; o0 1 1 377
2 111 0 1 377
312120 Bs7s = 5 1 1 0 377
_0 ! 2 3_ 3 o0 o0 oo O
0 o 1 1 2 ]
1 1 0 1 3
Bi = 211 1 0 2 o 1 2 3
0 1 2 3 B . 1 1 0 1 999
ofo0 1 1 37 98 = 5, 1 1 0 999
B, _ 1|1 0 13 3 o0 o0 o0 0
27 2|1 1 0 3 :
3 [ o0 00 oo 0]
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RIP-like example — What’s going on?

Recall
A (i, ) = AM(i, ) @ A*(i, j)

@ A*(i, j) may be arrived at very quickly

@ but AXM(/, j) may be better until a very large value of k is reached
(counting to convergence)

@ or it may always be better (counting to infinity).

Solutions?
@ RIP: co =16

@ We will explore various ways of adding paths to metrics and
eliminating those paths with loops ....
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Goal

G=(V, E)
A semiring S, such that if A is an adjaceny matrix over S with

Ali,j) = { {(i.)} (i) eE

{} otherwise

then

A*(i,j) = the set of all elementary (no loops) paths from i to j.

We could attempt to directly define such an algebra. But instead we
will build it step-by-step using simple constructions ...
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Lifted Product

Lifted product semigroup

Assume (S, ®) is a semigroup. Let lifty (S) = (Pan(S), ®) where
XQY={xoy|xeX, yeVY}

, Where X, Y € Ps,(S), the set of finite subsets of S.

Lifted semiring
If 1 is the identity for ®, then

lift(S) = (Pa(S), U, &, {}, {T})

is a semiring. Note that {} is an annihilator for &.

When does lift(S) have an annihilator for U?
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Operation for inserting a zero

add_zero(0, (S, @, ®)) = (Sw {0}, @5, ®;)

where

a (if b=
adgh = b (if a =
inl(x®y) (fa=

(0) (fb=
akgb = { inr(0)  (if @ = inr(

inlx®y) (fa=

inr(0)
inr(0))

inl(x),
1nr(§)

0))
), b

inl(x),

b= inl(y))

= inl(y))

disjoint union

Aw B = {inl(a) | ac A} U {inr(b) | b € B}
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Operation for inserting a one

add_one(1, (S, @, ®)) = (Sw {1}, 5, ®7)

where

inr(1)  (if b = inr(1))
agorb = inr(1)  (if @ = inr(1))

inl(x @ y) (if a=inl(x), b= inl(y))
a (if b = inr(1))
aepsb = b (if a = inr(1))

inl(x ® y) (|f a = inl(x), b = inl(x))
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Reductions

If (S,®,®) is a semiring and r is a function from Sto S, then ris a
reduction if for all aand bin S

Q r(a)=r(r(a))
Q r(aeb)=r(r(a @ b)=r(adrb))
Q r(a®b)=r(r(a)®b)=r(a® r(b))

Note that if either operation has an identity, then the first axioms is not
needed. For example,

r(a) = r(a®0) = r(r(a) ® 0) = r(r(a))
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Reduce operation

If (S, &, ®) is semiring and r is a reduction, then let
redr(s) = (Sr, @r, ®r) Where

Q S ={seS|r(s)=s}
Q xary=r(xoy)
Q xary=r(xey)

Is the result always semiring?
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Finally : A semiring of elementary paths

Semigroup of Sequences seq(X)
@ carrier : finite sequences over elements of X
@ operation : concatenation
@ identity : the empty string e

Let X be a set of sequences over lift(seq(E)), and let

r(X) ={p € X | pis an elementary path in G}

Semiring of Elementary Paths
sep(G) = red,(lift(seq(E))) J

Preview of next problem set: In order to check that sep(G) is indeed a
semiring, we only need understand the functions lift(_) and red (_).

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2013 30/46



sep(@G) example

{0, 1)}

{(2, 1)}¥
{(1,0)} {(4,1)}
v N

{(2,0)) / T (@.2))
N

{(0,3)}
N {3,2)}1,3)}
{(3,0)}
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sep(G) example, adjacency matrix

0 1 2 3 4

of{ {+ {+ {0 O
0 {g 0
=210 O {g O {
s {0 O O {g §
L 00 0 g
0 1 2 3 4
0 o,y {621 {10,391y {
U IR (GR%))) S § S (€ 17-))) St SR ()
A = 2 {[2o} {0} O {23 {249
s | IGO0 O AlG2 {}
4 ¢ {0y {423 {

Here | write a non-empty path p as [p].
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sep(G) example, solution

A*(0,0)

A*(0,4)

= {e}
[(0,1),(1,4)],
[(0,1),(1,2),(2,4)],
[(0,2),(2,4)],
[(0,2),(2,1),(1,4)],
[(0,3),(3,2), (2, 4)],
(- 1(0,3),(8,2),(2,1),
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Direct Product of Semigroups

Let (S,®g) and (T, &71) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted (S, ®s) x (T,®7) = (S x T,®), where
@ = dg x @7 is defined as

(s1,t1) ©(S2, ) = (S1 Ds S2, 1 DT b).

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2013 34 /46



Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup)

Suppose that semigroup (S, ©g) is commutative, idempotent, and
selective and that (T, ©7) is a semigroup. The lexicographic product is
denoted (S, @s) X (T, 1) = (S x T,D), where & = g X Oris
defined as

(51 Dss2, 1 D7) S1 =85 DsS2=9%
(51, t1)D(S2, t2) = ¢ (51 Bs S, 1) S1 =81 OsS2 # S2
(81 ®s S2, 1) S1#S1BsSe2 =S
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Lexicographic product of Bi-semigroups

(S, @, ®g) X (T, &1, ®7) = (SX T, Bg X BT, Qg X ®7T)

Theorem
If &g is commutative, idempotent, and selective, then

LD(S X T) <= LD(S) ALD(T) A (LC(S) V LK(T))

Where

Property Definition

LD Va,b,c:c®(a®db)=(c®a)®(cxb)
LC Va,b,c:c®a=c®b — a=»>b

LK Va,b,c:c®a=c®b
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Prove
LD(S) ALD(T) A (LC(S) VLK(T)) = LD(S X T)

Assume S and T are bisemigroups, LD(S) A LD(T) A (LC(S) V LK(T)),

and
(S1, t1), (32, tg), (83, t3) eSxT.

Then (dropping operator subscripts for clarity) we have
lhs = (s1,t) ® ((S2. 2)D(ss, 13))

(81 R t1) & (32 @ 83, ZLlhs)
= (51 ® (52D 83), by ® ins)

ths = ((s1,t)® (s2,8))8((s1. 1) @ (83, )
S1® S, @b)D(S1 @83, 1 @ 1B3)
(81 ® S2) Bs (S1 ® S3), lins)

S1 ® (S2 @ S3), tns)

(
(
(
(

where ty, and t., are determined by the definition of &.
We need to show that /hs = rhs, that is tys = 1 @ lins-
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Case 1:LC(S)

Note that we have
(x) Va,b,c:a#b —= c®a#c®b

Case 1.1 :8 =S @ Ss3 = 83. Then fi,s = b @ 3 and

Rl =Hh®(Ldk)=(4obh)®(l @), by LD(S). Also,

S1RsS =81 ®sS3and s1 RS =51 R (S2 D S3) = (51 ®82)D(S1®83),
again by LD(S). Therefore tns = (H @ b)) ® (H @ l3) = t @ bps.

Case1.2:8, =S ®S3#S3. Thenty @ tps = t) ® t> Also

So =S DS3 = S$1 QS =251 ®(S2® S3) and by x

SoDS3#S3 = S1® (S S3) # Sy ®S3. Thus, by LD(S),

(51 08)B(S1®83)#S1®szandwe get tns = H @ b =t @ b

Case 1.3 : s, # S0 Dg S3 = S3. Similar to case 1.2.
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Case 2 : LK(T)

Case 2.1 : so = s> g S3 = S3. Same as Case 1.1.

Case2.2:5 =5 ®gS3# S3. Then ty @ s = H ® . Now,

(51 ®82) Bs(S1®83) =851 ®(S2 D S3) =81 ® Sp. SO

s = (L Rb)B(het)=t (LD k) ortw = (t ® k). In either
case, by is of the form t; ® t, so by LK(T) we know that tys = { ® tips.

Case 2.3 : s, # s Dg S3 = S3. Similar to case 2.2.
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Examples

name LD LC LK

min_plus Yes Yes No
max_min Yes No No
sep(G) Yes No No

So we have .
LD(min_plus X max_min)
LD(min_plus X sep(G))
But -
—(LD(max_min X min_plus))
—(LD(sep(G) X min_plus))
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Shortest paths with best paths

Let’s use
add_zero(oco, min_plus X sep(G)) J
0 1 2 3 4
o | (0,{€}) 00 00 00 00
1 00 (0,{e}) 00 00 00
I = 2 00 00 (0,{e}) 00 00
3 00 00 00 (0,{e}) 00
4 00 00 00 00 (0,{e})
0 1 2 3
0 00 (2,400, 01}) (1,{[(0,2)1}) (6,{[(0,3)]})
1| (2,40(1,0)]3) 00 (5,{[(1,2)1}) 00 (4.4l
A = 2| (1L{[(20)]}) G.{l(2ND]}) 00 (4.41(2,3)1})  BAl
3 | (6,{[(3,0)}) 00 (4,{[(3,2)]}) 00
4 00 444,01} GAl(4.2)]}) 00
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Solution

0 1 2
0 (0, {e}) (2.{[(0, )]}) (1,{[(0,2)]})
1 (2,{[(1,0)]}) (0, {¢}) (3,{[(1,0),(0,2)]})
A" =2 (1,{I(2,0)]}) (3,{[(2,0),(0,1)]}) (0, {e})
3 | (5:41(3,2),(2,0)1}) (7,{[(3,2),(2,0),(0,1)]})  (4.{I(3,2)]})
4 | (4.{[(4,2),(2,0)}) (4.{[(4.)1}) 3, {[(4.2)1})
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Starting in an arbitrary state? No!

Let’s use our friend
add_zero(oco, min_plus X sep(G)) J
Problem:
0 1 2 3
0 O, {e}) (1,410, N} (1.{[(0,2)]}) (999,{})
By — | (BUMLOI) - (0.4e}) — (1.{[(1,2)]}) (999,})
2 | (L{I00) ({101}  (O.{e) (?(?9{’{}}5)
3 00 00 00 ,{€
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Starting in an arbitrary state?

Solution: use another reduction!
r(oc) = oo
B 00 if W={}
r(s, W) = { (s, W) otherwise
Now use this instead

red,(add_zero(oco, min_plus X sep(G)))
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Starting in an arbitrary state?

w N = o
—
~—~
N
~—
— et ek
~— s
WO
—_—=
-— N N

w M = o
—
—~~
—
—~
— O
—
N =~

(1,{1(1,2)1})
(0,{e})
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Starting in an arbitrary state?

’
01 (0.4e)) (1,
I}

0 1
(0, {e}) (.40, D]}) (1,
(1,{[(1,0
(1.{l2,0) .{ln})  (©

3
)]}; (37{[(0,2)7(2,1),(173)]})]

w N = o

1 2 3
0 0, {e}) (. {[(0,N]}) (1.{[(0,2)]}) oo
1| (1L4[(1,0)]}) (0,{€}) (1.{[(1,2)]}) oo
2 | (1L{[(20)}) (. {l21]})  (O.{e}) 00
3 00 00 00 (0,{e})
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