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In	
  This	
  Lecture	
  

•  In	
  this	
  lecture	
  we	
  will	
  show	
  some	
  more	
  
examples	
  of	
  applica=ons	
  of	
  epidemics	
  and	
  
informa=on	
  cascades	
  in	
  real	
  networks.	
  



Characterizing	
  Social	
  	
  
Cascades	
  in	
  Flickr	
  

•  Flickr	
  social	
  network	
  (25%):	
  WCC.	
  
•  Growing	
  dataset	
  over	
  100	
  days.	
  
•  2M	
  users.	
  
•  Favourite	
  photo	
  info	
  used.	
  
•  34,734,221	
  favorite	
  markings	
  over	
  11,267,320	
  
dis=nct	
  photos.	
  



Ques=ons	
  Answered	
  

•  Does	
  content	
  in	
  Flickr	
  spread	
  along	
  links	
  in	
  the	
  
social	
  network?	
  

•  What	
  are	
  the	
  proper=es	
  of	
  content	
  
dissemina=on	
  in	
  Flickr	
  (e.g.,	
  how	
  long	
  aZer	
  
being	
  exposed	
  to	
  a	
  piece	
  of	
  content	
  do	
  users	
  
tend	
  to	
  propagate	
  it)?	
  

•  Can	
  exis=ng	
  epidemiological	
  models	
  
characterize	
  the	
  informa=on	
  dissemina=on	
  
observed	
  in	
  Flickr?	
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  know	
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Mechanisms	
  of	
  	
  
Informa=on	
  Propaga=on	
  

•  Featuring	
  (front	
  page,	
  hotlists)	
  
•  External	
  links	
  
•  Search	
  results	
  
•  Links	
  between	
  content	
  
•  Online	
  social	
  links	
  



How	
  to	
  iden=fy	
  informa=on	
  flow	
  
through	
  social	
  links?	
  

•  Did	
  a	
  par=cular	
  bookmark	
  spread	
  through	
  
social	
  links?	
  

•  No:	
  if	
  a	
  user	
  bookmarks	
  a	
  photo	
  and	
  if	
  none	
  of	
  
his	
  friends	
  have	
  previously	
  bookmarked	
  the	
  
photo	
  

•  Yes:	
  if	
  a	
  user	
  bookmarks	
  a	
  photo	
  a%er	
  
	
  one	
  of	
  his	
  friends	
  bookmarked	
  the	
  photo	
  



Steady	
  Increase	
  
§  75%	
  of	
  bookmarks	
  through	
  social	
  links	
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Found	
  through	
  
social	
  links	
  

Through	
  other	
  
mechanisms	
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Who	
  is	
  driving	
  the	
  increase	
  	
  
in	
  fan	
  numbers?	
  

the	
  “social	
  cascade”	
  group	
  
accounts	
  for	
  over	
  half	
  of	
  
new	
  fans	
  

the	
  dominance	
  of	
  the	
  
“social	
  cascade”	
  group	
  over	
  
the	
  “other”	
  group	
  switches	
  
during	
  the	
  two	
  popularity	
  
surges	
  exhibited	
  by	
  photo	
  B	
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(a) Growth of fans, photo A
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(c) Breakdown of new fans, photo A

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

Photo age (days)

   
Pe

rc
en

t o
f f

an
s 

(%
)

 

 
Social cascade
Other

(d) Breakdown of new fans, photo B

Figure 1: Evolution of the number of fans of photos A and B. The bottom plots show the fraction of new
fans that are part of a social cascade. Both photos show strong evidence of social cascades.

In short, this means that B was A’s contact before A found
the photo, and B had already found the photo. If all of
these conditions hold, then we consider the photo to have
propagated across the B→A social link. Note that there may
exist multiple such users from whom A could have found the
photo – in this case, we consider all of the links as having
been used. In other words, we assume A was exposed to the
photo by all of these users.

3.3 Popularity Growth of Two Sample Photos
To ground our discussion of social cascades, we pick two
popular photos (shown in Figure 2), and examine the growth
in their number of fans over time.

(a) Photo A (b) Photo B

Figure 2: Sample photos from Flickr

We show the number of fans over time for these photos
in Figures 1(a) and 1(b), respectively. The horizontal axis
represents time since upload of the photo, representing the
photo’s age on Flickr. Photo A shows steady linear growth,
reaching 1400 fans over the course of 430 days. In contrast,
photo B obtains approximately the same number of fans in
a much shorter period of time, 180 days. Photo B shows
two surges in popularity, one at day 1 when approximately

500 users become fans, and another at day 30. Growth is
relatively slow in the intervening periods.

The difference in the pattern of fan growth between pho-
tos A and B may reflect different methods of information
dissemination. Picture A’s slow and steady fan growth may
illustrate the social cascade pattern, in which users find their
favorite photos from their contacts. Picture B’s sudden
surges in fan growth may illustrate the impact of featur-
ing or external links, where photos are exposed to a large
set of random users and increase their likelihood of being
bookmarked.

We look for evidence of social cascades in the growth of
popularity in these two photos. For each new fan, we deter-
mine whether one of that fan’s contacts was already a fan
(in accordance with our definition in Section 3.2). If such a
previous fan exists, we place the new fan in the “social cas-
cade” group. Otherwise we place the new fan in the “other”
group.

Figures 1(c) and 1(d) show the fraction of new fans that
participate in social cascades over time. We make several
observations. First, the “social cascade” group accounts for
over half of new fans for both photos. This suggests that the
social network plays a significant role in content dissemina-
tion. Second, we observe that the dominance of the “social
cascade” group over the “other” group switches during the
two popularity surges exhibited by photo B. This suggests
that during these surges in popularity, other mechanisms
such as linking from external sites or featuring are driving
the rapid increase in fans.

Motivated by these preliminary findings from the case
studies, we delve further into the dynamic patterns of in-
formation dissemination through social links in Flickr in the
next section.
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Figure 4: Latent time in social cascade events

user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸

/
˙

k
¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0

50%	
  of	
  first	
  cascade	
  
steps	
  happens	
  in	
  
the	
  first	
  3	
  days.	
  
20%	
  take	
  longer	
  
than	
  a	
  month.	
  
50%	
  of	
  cascade	
  
steps	
  take	
  50	
  days	
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Figure 4: Latent time in social cascade events

user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸

/
˙

k
¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0

35%	
  of	
  social	
  cascade	
  
events	
  are	
  influenced	
  by	
  a	
  
single	
  infector;	
  20%	
  of	
  the	
  
events	
  by	
  two	
  infectors;	
  
and	
  the	
  remaining	
  45%	
  
involve	
  three	
  or	
  more	
  
poten=al	
  infectors.	
  For	
  10%	
  
of	
  the	
  events,	
  the	
  infectee	
  
had	
  more	
  than	
  10	
  contacts	
  
who	
  had	
  already	
  marked	
  
the	
  same	
  photo	
  as	
  a	
  
favorite.	
  

Number	
  of	
  infected	
  contacts	
  
when	
  user	
  marks	
  the	
  picture	
  
as	
  favourite.	
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•  Let’s	
  recall	
  the	
  defini=on	
  
of	
  R0	
  in	
  epidemic	
  models	
  

•  If	
  R0>1	
  spreads	
  
•  If	
  R0<1	
  dies	
  out	
  
•  R0=1	
  epidemic	
  threshold	
  	
  

•  p	
  empirical	
  calcula=on:	
  	
  
–  For	
  each	
  fan,	
  count	
  how	
  

many	
  friends	
  further	
  
bookmark	
  the	
  same	
  
photo.	
  Average	
  the	
  
count.	
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸

/
˙

k
¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸

/
˙

k
¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸
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¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0
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Es=ma=ons	
  

1.  Formula	
  based	
  es=ma=on	
  of	
  R0:	
  
– Es=ma=ng	
  p:	
  Given	
  an	
  infected	
  node	
  count	
  the	
  
neighbours	
  subsequently	
  infected	
  

– This	
  allows	
  to	
  derive	
  a	
  general	
  R^0	
  from	
  the	
  
equa=on	
  

2.  Empirical	
  es=ma=on	
  of	
  R0:	
  
–  	
  Given	
  start	
  node	
  of	
  cascade,	
  count	
  the	
  number	
  of	
  
directly	
  infected	
  nodes	
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Predic=ng	
  spreading	
  

•  The	
  correla=on	
  means	
  that	
  by	
  using	
  the	
  social	
  
network	
  proper=es	
  and	
  some	
  simple	
  
observa=on	
  over	
  a	
  short	
  =me	
  series	
  of	
  user	
  
ac=vity	
  we	
  can	
  predict	
  the	
  popularity	
  of	
  
photos.	
  



Discussion	
  
•  Social	
  Cascades	
  occur	
  in	
  Flickr	
  
•  	
  The	
  basic	
  reproduc=on	
  number	
  of	
  popular	
  
photos	
  to	
  be	
  between	
  1	
  and	
  190.	
  This	
  is	
  much	
  
higher	
  than	
  very	
  infec=ous	
  diseases	
  like	
  measles,	
  
indica=ng	
  that	
  social	
  networks	
  are	
  efficient	
  
transmission	
  mediums	
  and	
  online	
  content	
  can	
  be	
  
very	
  infec=ous.	
  

•  Lots	
  of	
  heterogeneity	
  in	
  the	
  network	
  and	
  users.	
  
•  Given	
  the	
  expected	
  spread	
  and	
  the	
  node	
  degree	
  
they	
  can	
  predict	
  the	
  expected	
  spread	
  on	
  various	
  
networks	
  (knowing	
  <k>).	
  



Another	
  study	
  on	
  cascades	
  

•  Tracing	
  informa=on	
  flow	
  on	
  a	
  global	
  scale	
  
using	
  Internet	
  chain-­‐lemer	
  data.	
  

•  Iraq	
  Pe==on	
  Example:	
  
Sample Iraq Petition

Date: Mon, 17 Mar 2003 16:39:51 -0600
From: XXXX <XXXX@mac.com>
To: usa@un.int, president@whitehouse.gov
Subject: UN Petition

UN Petition for Peace

Non-essential personnel are now evacuating from the US embassies in
the middle east. Was is about to start. It takes is 20% of us to cry out
for "NO WAR" to induce further diplomacy, but they say our numbers are more
like 2%. US Congress has authorized the President of the US to go to war
against Iraq. Please consider this an urgent request. UN Petition for
Peace, Stand for Peace. Islam is not the Enemy. War is NOT the Answer.
Speak against a THIRD WORLD WAR. The UN is gathering signatures in an
effort to avoid a tragic world event.

Please COPY (rather than Forward) this e-mail in a new message, sign
at the end of the list, and send it to all the people whom you know. If
you receive this list with more than 500 names signed, please send a copy
of the message to:

usa@un.int
and president@whitehouse.gov

Even if you decide not to sign, please consider forwarding the petition on
instead of eliminating it
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Sample Iraq Petition

Date: Mon, 17 Mar 2003 16:39:51 -0600
From: XXXX <XXXX@mac.com>
To: usa@un.int, president@whitehouse.gov
Subject: UN Petition

UN Petition for Peace

Non-essential personnel are now evacuating from the US embassies in
the middle east. Was is about to start. It takes is 20% of us to cry out
for "NO WAR" to induce further diplomacy, but they say our numbers are more
like 2%. US Congress has authorized the President of the US to go to war
against Iraq. Please consider this an urgent request. UN Petition for
Peace, Stand for Peace. Islam is not the Enemy. War is NOT the Answer.
Speak against a THIRD WORLD WAR. The UN is gathering signatures in an
effort to avoid a tragic world event.

Please COPY (rather than Forward) this e-mail in a new message, sign
at the end of the list, and send it to all the people whom you know. If
you receive this list with more than 500 names signed, please send a copy
of the message to:

usa@un.int
and president@whitehouse.gov

Even if you decide not to sign, please consider forwarding the petition on
instead of eliminating it

1) Alice Thomas

2) Bob Smith

3) Charlie Miller

4) Dianna Johnson

5) Eve Brown

6) Frank Davis

7) Gina Williams

[...]
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Data	
  Cleaning	
  and	
  Gathering	
  

•  Query	
  search	
  engine	
  to	
  find	
  
copies	
  of	
  pe==ons.	
  
–  	
  (∼650	
  dis=nct	
  copies	
  found.)	
  
–  (∼20K	
  dis=nct	
  names.)	
  

•  compute	
  propaga=on	
  tree	
  
from	
  these	
  copies	
  
–  (x	
  →	
  y	
  if	
  there	
  is	
  a	
  copy	
  where	
  x	
  
immediately	
  precedes	
  y.)	
  

Data gathering

query search engines to find copies of petitions.

(∼650 distinct copies found.)

(∼20K distinct names.)

compute propagation tree from these copies.

(x → y if there is a copy where x immediately precedes y.)

ALICE THOMAS

BOB SMITH

CHARLIE MILLER

DIANNA JOHNSON

EVE BROWN HENRY WILSON

FRANK DAVIS IAN ANDERSON

GINA WILLIAMS

A unique dataset:

genuine large-scale trace of information

propagation through social network

each copy ‘lights up’ a path to the source

(and 650 copies → 20K people!)

http://petitions.cs.carleton.edu 8



Building	
  a	
  propaga=on	
  tree	
  Building a propagation tree
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Is	
  this	
  really	
  a	
  tree?	
  

•  No.	
  some	
  responded	
  twice	
  (have	
  2	
  parents)	
  
•  Typographical	
  changes	
  are	
  frequent	
  

•  List	
  rearrangements	
  are	
  common	
  

Propagation Trees

Is the propagation pattern really a tree?

No. Some respond twice (i.e., have two parents). (Rare.)

Doesn’t appear so. Typographical changes are frequent:

John Smith Santa Monica Calif John Smith Santa Monica USA John Smith Santa Monica Calif USA

Doesn’t appear so. List rearrangements fairly common!

http://petitions.cs.carleton.edu 10



Propaga=on	
  tree	
  Building a propagation tree
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Solu=on 	
  	
  

•  Use	
  the	
  graph	
  

•  run	
  max-­‐weight	
  spanning	
  arborescence	
  
algorithm	
  to	
  produce	
  a	
  tree	
  from	
  G.
	
  [Edmonds	
  1967]	
  

•  prune	
  tree	
  to	
  eliminate	
  any	
  nodes	
  that	
  have	
  
no	
  poster	
  nodes	
  beneath	
  them.	
  

Data gathering redux

query search engines to find copies of petitions.

compute propagation tree graph G from these copies.

(Treat names within small edit-distance threshold as identical.)

(∼650 ‘poster nodes.’)

define weights on G:

weight(x → y) := # copies s.t. x immediately precedes y.

run max-weight spanning arborescence algorithm

to produce a tree from G. [Edmonds 1967]

prune tree to eliminate any nodes that have

no poster nodes beneath them.
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Graph	
  to	
  Tree	
  Propagation tree redux
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Expecta=ons	
  Expectations for the tree

Expectations:

The petition is flooding the social network.

Small world ⇒ the tree’s depth will be small.

High branching: people have many friends (10’s or 100’s).

So the propagation tree should be shallow and wide.

(unless it dies out quickly.)

http://petitions.cs.carleton.edu 18

•  The	
  pe==on	
  is	
  flooding	
  the	
  social	
  network.	
  	
  
•  Small	
  world	
  ⇒	
  the	
  tree’s	
  depth	
  will	
  be	
  small.	
  High	
  
branching:	
  people	
  have	
  many	
  friends	
  (10’s	
  or	
  100’s).	
  

•  So	
  the	
  propaga=on	
  tree	
  should	
  be	
  shallow	
  and	
  wide.	
  
•  (unless	
  it	
  dies	
  out	
  quickly.)	
  



The	
  tree	
  looks	
  like	
  this	
  Anti–Iraq War petition

http://petitions.cs.carleton.edu 20

Oddities in propagation tree

Expectations: shallow, wide tree with high branching factor.

(unless it dies out quickly.)

This tree is weird!

process doesn’t die out quickly.

asdfasdf 20K nodes in posted copies.

tree is very deep.

asdfasdf median node depth ≈ 288.

tree is very narrow.

asdfasdf over 94% of nodes have only one child.
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Modelling	
  

•  Let	
  us	
  try	
  to	
  find	
  a	
  model	
  that	
  reproduces	
  this:	
  

•  Deep	
  tree	
  
•  Small	
  width	
  
•  Large	
  single	
  child	
  frac=on	
  

•  Iraq	
  tree	
  (18k	
  nodes)	
  
•  depth	
  288,	
  width	
  82,	
  single-­‐child	
  frac=on	
  94%	
  



Tried	
  simula=on	
  on	
  LiveJournal	
  
•  simulate	
  on	
  real	
  social	
  network	
  (LiveJournal,	
  
4.4M	
  nodes).	
  Randomly	
  choose	
  an	
  ini=ator	
  node	
  
(=	
  root).	
  

•  each	
  recipient	
  discards	
  with	
  prob	
  δ,	
  forwards	
  
with	
  prob	
  1	
  −	
  δ.	
  δ	
  :=	
  0.65 	
  [Dodds	
  Muhamad	
  
Wams	
  2003]	
  

•  a	
  non-­‐discarding	
  recipient	
  posts	
  his	
  copy	
  with	
  
prob	
  π	
  (a	
  posted	
  copy	
  ‘lights	
  up’	
  the	
  root-­‐to-­‐
poster	
  path.)	
  

•  tree	
  propagates	
  from	
  root	
  un=l	
  either	
  (i)	
  the	
  
process	
  dies	
  out	
  (‘fizzles’)	
  or	
  (ii)	
  observable	
  
por=on	
  of	
  tree	
  reaches	
  size	
  of	
  Iraq	
  tree.	
  



Epidemic	
  Model	
  

•  randomly	
  choose	
  an	
  ini=ator	
  node	
  (=	
  root)	
  
•  for	
  each	
  x	
  who	
  first	
  receives	
  a	
  list	
  at	
  =me	
  t:	
  x	
  
discards	
  with	
  probability	
  δ	
  =	
  0.65;	
  otherwise:	
  	
  
–  	
  x	
  appends	
  x	
  to	
  	
  
– x	
  forwards	
  to	
  all	
  neighbours	
  (who	
  act	
  at	
  =me	
  t	
  +	
  1)	
  
– x	
  posts	
  with	
  probability	
  π.	
  
–  Iraq	
  tree	
  (18K	
  nodes):	
  depth	
  288,	
  width	
  82,	
  single-­‐
child	
  94%	
  	
  

– Epidemic	
  tree:	
  depth	
  5,	
  width	
  9625,	
  single-­‐child	
  
19%	
  



Why?	
  
The trouble with epidemics

Social networks have lots of “cliquey” communities.

⇒ high degrees in epidemic tree (not true in Iraq).

A

B C F

D E

A

B C D E

F

A

B

C

D F

E

One reason to think that cliques can be “serialized”:

BCDE don’t react synchronously at time t = 1.

A mails BCDE at t = 0

Each receives message at first email check after t = 0.

B responds first ⇒ C gets new copy from B.
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Asynchronous	
  Model	
  

•  randomly	
  choose	
  an	
  ini=ator	
  node	
  (=	
  root)	
  
•  for	
  each	
  x	
  who	
  first	
  receives	
  a	
  list	
  at	
  =me	
  t:	
  x	
  
chooses	
  a	
  delay	
  τ,	
  where	
  Pr[τ]	
  =???.	
  At	
  =me	
  t	
  
+	
  τ:	
  
–  	
  x	
  discards	
  with	
  probability	
  δ	
  =	
  0.65;	
  otherwise:	
  	
  
–  	
  x	
  appends	
  x	
  to	
  longest	
  list	
  x	
  received	
  (in	
  [t,	
  t	
  +	
  τ	
  ])	
  
– x	
  forwards	
  to	
  all	
  x’s	
  neighbours.	
  
– x	
  posts	
  with	
  probability	
  π.	
  



Delay	
  Distribu=on	
  Delay distributions

You receive a message at time t; you respond at time t + τ .

What does τ look like?

Letters from Darwin and Einstein: [Oliveira Barabasi 2005]

We use Pr[τ ] ∝ τ−3/2.

(though the precise exponent actually doesn’t matter much.)
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Epidemic	
  Model	
  

•  randomly	
  choose	
  an	
  ini=ator	
  node	
  (=	
  root)	
  
•  for	
  each	
  x	
  who	
  first	
  receives	
  a	
  list	
  at	
  =me	
  t:	
  x	
  
chooses	
  a	
  delay	
  τ,	
  where	
  Pr[τ]	
  ∝	
  τ−3/2.	
  At	
  
Ime	
  t	
  +	
  τ:	
  
– x	
  discards	
  with	
  probability	
  δ	
  =	
  0.65;	
  otherwise:	
  
– x	
  appends	
  x	
  to	
  longest	
  list	
  x	
  received	
  (in	
  [t,	
  t	
  +	
  τ	
  ]),	
  
– x	
  forwards	
  to	
  all	
  x’s	
  neighbours	
  x,	
  	
  
– x	
  posts	
  with	
  probability	
  π.	
  



Epidemic	
  Model	
  

The Asychronous Model

randomly choose an initiator node (= root)

for each x who first receives a list at time t:

x chooses a delay τ , where Pr[τ ] ∝ τ−3/2. At time t + τ :

— x discards with probability δ = 0.65; otherwise:

— x appends x to longest list x received (in [t, t + τ ])

x forwards to all x’s neighbors

x posts with probability π.
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One	
  More	
  Ingredient	
  One more ingredient

(18K nodes) depth width single-child %

Iraq 288 82 94%

Epidemic 5 9625 19%

Asynchronous 42 505 55%

Asynchronicity has serialized cliques, but we need more.

(e.g., social networks are “cliquey” but not just cliques.)

When x receives a list, it can either

— forward that list to all of x’s friends, OR

— reply-to-all to all of x’s corecipients on the message.
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The	
  Asynchronous	
  Model	
  

•  randomly	
  choose	
  an	
  ini=ator	
  node	
  (=	
  root)	
  
•  for	
  each	
  x	
  who	
  first	
  receives	
  a	
  list	
  at	
  =me	
  t:	
  x	
  
chooses	
  a	
  delay	
  τ,	
  where	
  Pr[τ]	
  ∝	
  τ−3/2.	
  At	
  
=me	
  t	
  +	
  τ:	
  
–  	
  x	
  discards	
  with	
  probability	
  δ	
  =	
  0.65;	
  otherwise:	
  	
  
–  	
  x	
  appends	
  x	
  to	
  longest	
  list	
  x	
  received	
  (in	
  [t,	
  t	
  +	
  τ	
  ])	
  
– x	
  forwards	
  to	
  all	
  x’s	
  neighbors.	
  	
  
– x	
  posts	
  with	
  probability	
  π.	
  



The	
  Full	
  Model	
  

•  randomly	
  choose	
  an	
  ini=ator	
  node	
  (=	
  root)	
  
•  for	
  each	
  x	
  who	
  first	
  receives	
  a	
  list	
  at	
  =me	
  t:	
  x	
  
chooses	
  a	
  delay	
  τ,	
  where	
  Pr[τ]	
  ∝	
  τ−3/2.	
  At	
  =me	
  t	
  
+	
  τ:	
  
–  	
  x	
  discards	
  with	
  probability	
  δ	
  =	
  0.65;	
  otherwise:	
  
–  	
  x	
  appends	
  x	
  to	
  longest	
  list	
  x	
  received	
  (in	
  [t,	
  t	
  +	
  τ	
  ])	
  
– with	
  prob	
  β,	
  x	
  replies	
  to	
  all	
  of	
  x’s	
  corecipients;	
  with	
  
prob	
  1	
  −	
  β,	
  x	
  forwards	
  to	
  all	
  of	
  x’s	
  neighbors.	
  

–  x	
  posts	
  with	
  probability	
  π.	
  
The	
  asynchronous	
  model	
  =	
  full	
  model	
  with	
  β=0	
  



Studying	
  Single	
  Child	
  Propor=on	
  
Single-child fraction

Iraq: 94%

 0

 0.2

 0.4

 0.6

 0.8

 1

single-child node fraction

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
back rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

po
st

 ra
te

http://petitions.cs.carleton.edu 38



Tree	
  Depth	
  
Tree depth

Iraq: 288
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Tree	
  Width	
  Tree width

Iraq: 82
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It	
  matches!	
  

Simulations: β = 0.950, π = 0.22
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Discussion	
  

•  A	
  model	
  with	
  asynchronicity	
  and	
  group-­‐reply	
  
was	
  a	
  good	
  ini=al	
  approxima=on	
  

•  More	
  data	
  needed	
  to	
  understand	
  what’s	
  
happening	
  



Summary	
  

•  We	
  have	
  shown	
  examples	
  of	
  applica=on	
  of	
  
cascades	
  and	
  epidemic	
  models	
  to	
  real	
  data	
  

•  Real	
  data	
  is	
  challenging	
  and	
  oZen	
  processes	
  
do	
  not	
  match	
  exact	
  models	
  and	
  need	
  
tweaking.	
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