In This Lecture

• We revisit power-law networks and define the concept of robustness
• We show the effect of random and targeted attacks on power law networks versus random networks
• We discuss applications to various networks
Internet AS topology

- Autonomous System (AS): a collection of networks under the same administration
- 2009: 25,000 ASs in the Internet
Topology Information

- By reading the routing tables of some gateways connected ASs, Internet topology information could be gathered.
- October 08:
 - Over 30,000 ASs (including repeated entries)
 - Over 100,000 edges
Degree distribution of ASs: A scale free network!
Properties

• The top AS is connected to almost 10% of all ASs
• This connectedness drops rapidly
• Very high clustering coefficient for top 1000 hubs: an almost complete graph
• Most paths no longer than 3-4 hops
• Most ASs separated by shortest paths of maximum length of 6
The Internet Now [Sigcomm10]

• They monitored inter-domain traffic for **2 years**
 – 3095 Routers
 – 110 ISPs
 • 18 Global
 • 38 Regional
 • 42 Consumer
 – 12 Terabits per second
 – 200 Exabytes total (200,000,000,000,000,000,000,000)
 – ~25% all inter-domain traffic.

• Inspect packets and classify them.
Internet 2007

- Settlement Free
- Pay for BW
- Pay for access BW
Internet 2009

- Flatter and much more densely interconnected Internet
- Disintermediation between content and "eyeball" networks
- New commercial models between content, consumer and transit
Internet traffic: responsibility to few

- In 2007, thousands of ASNs contributed 50% of content
- In 2009, 150 ASNs contribute 50% of all Internet traffic
Robustness

• If a fraction of nodes or edges are removed:
 – How large are connected components?
 – What is the average distance between nodes in the components?

• This is related to Percolation
 – each edge/node is removed with probability \((1-p) \)
 • Corresponds to random failure
 – Targeted attacks: remove nodes with high degree, or edges with high betweenness.

• The formation or dissolution of a giant component defines the percolation threshold
How Robust are These?
Edge (or Bond) Percolation

- 50 nodes, 116 edges, average degree 4.64
- after 25% edge removal
- 76 edges, average degree 3.04 – still well above percolation threshold
Percolation threshold: how many edges have to be removed before the giant component disappears?

As the average degree increases to 1, a giant component suddenly appears.

Edge removal is the opposite process – at some point the average degree drops below 1 and the network becomes disconnected.
Site Percolation

Ordinary Site Percolation on Lattices:
Fill in each site (site percolation) with probability p

- **low p**: small islands of connected components.
- **p critical**: giant component forms, occupying finite fraction of infinite lattice. Other component sizes are power-law distributed.
- **p above critical value**: giant component occupies an increasingly large fraction of the system.
Barabasi-Yeong-Albert’s study (2000)

• Given 2 networks (one exponential one scale free) with same number of nodes and links
• Remove a small number of nodes and study changes in average shortest path to see if information communication has been disrupted and how much.
Let’s look at the blue lines

- Random graph: increasing monotonically
- SF: remains unchanged until at least 5%
Let’s look at the red lines

- Random graph: same behaviour if nodes with most links are chosen first
- SF: with 5% nodes removed the diameter is doubled

Fraction of deleted nodes
Effect of attacks and failure on WWW and Internet

![Diagram showing the effect of attacks and failure on network diameter and fraction of deleted nodes.](image)

Network diameter

Fraction of deleted nodes
Effect on Giant Component

Fraction of deleted nodes
Internet and WWW: Effect on Giant Component

Fraction of deleted nodes
Scale-free networks are resilient with respect to random attack

- Example: Gnutella network, 20% of nodes removed
Targeted attacks are affective against scale-free networks

• Example: same Gnutella network, 22 most connected nodes removed (2.8% of the nodes)

574 nodes in giant component

301 nodes in giant component
Another study of power-laws

- Graph shows fraction of GC size over fraction of nodes randomly removed
- Robustness of the Internet (γ is the exponent of PL).
 - $\gamma = 2.5$ Virtually no threshold exists which means a GC is always present
 - For $\gamma = 3.5$ there is a threshold around .0.4
- K indicates the connectivity level of the network considered
% of nodes removed, from highest to lowest degree

\(\gamma = 2.7 \) only 1% nodes removed leads to no GC

\(k_{\text{max}} \) needs to be very low (10) to destroy the GC

\(k_{\text{max}} \) is the highest degree among the remaining nodes
Percolation: let’s get formal

• Percolation process:
 • Occupation probability $\phi = \text{number of nodes in the network [ie not removed]}
 • It can be proven that the critical threshold depends on the degree:
 $$\phi_c = \frac{<k>}{<k^2> - <k>}$$

• This tells us the minimum fraction of nodes which must exist for a GC to exist.
Threshold for Random Graphs

- For Random networks $\varphi_{\text{critical}} = 1/c$ where c is the mean degree
 - If c is large the network can withstand the loss of many vertices
 - $c=4$ then $\frac{1}{4}$ of vertices are enough to have a GC [3/4 of the vertices need to be destroyed to destroy the GC]
• For the Internet and Scale Free networks with $2 < \alpha < 3$
 • Finite mean $<k>$ however $<k^2>$ diverges (in theory)
 • Then $\varphi_{\text{critical}}$ is zero: no matter how many vertices we remove there will always be a GC
 • In practice $<k^2>$ is never infinite for a finite network, although it can be very large, resulting in very small $\varphi_{\text{critical}}$, so still highly robust networks
Non random removal

• The threshold models we have presented hold for random node removal but not for targeted attacks [ie removal of high degree nodes first]

• The equation for non random removal cannot be solved analytically
Robustness Study and Improvements

• A method to improve network resilience
• Percolation threshold q ignores situation when the network is very damaged but not collapsing.
• Robustness:

$$R = \frac{1}{N} \sum_{Q=1}^{N} s(Q)$$

• R ranges from $1/N$ to 0.5 (star and fully connected graph).

$S(Q) =$ nodes in the connected component after removing $Q=qN$ nodes
• Add links until network is fully connected: not practical.
• Swap edges of 2 random nodes so that R’ > R
 • Repeat until no substantial improvement (a value delta);
• Some additional constraints could be introduced (limit the geographical length of new edges for economic reasons).
Robustness Improvement over edge changes

Robustness improved by 55-45% with ~5% link change. Percolation threshold remains unchanged.
Best Network for Robustness

• How do we design a robust network with a fixed degree distribution?
• Scale free $N=100$ edges$=300$, exponent$=2.5$

• Onion-like structure!
Robustness of Technological and Social Network

• Targeted attacks on high degree nodes are lethal to a technological and a biological as well as transport network.

• However as seen in Lecture 2, for social systems it is the bridges and weak ties which make a difference...
References