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In This Lecture

 We describe power law networks and their
properties and show examples of networks
which are power law in nature, including the
web.

 We present the preferential attachment
model which allows the generation of power
law networks.

 We study prediction of power laws

* We introduce search and PageRank
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The Web is a Graph...

This course page.
Me

My web page.
My Profile

My profile page.
Link to NSPCC

NSPCC Page

B UNIVERSITY OF
Y CAMBRIDGE



Precursor of hypertexts

e Citation networks of
books and articles.

* Difference: links point
only backwards in
time

\

Travers-
Milgram 1969
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Web is a Directed Graph

* Path: A path from A to B exists if there is a
sequence of nodes beginning with A and
ending with B such that each consecutive pair

of nodes is connected by an edge pointing in
the forward direction.
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Strongly Connected Component®

* A strongly connected component (SCC) in a
directed graph is a subset of nodes such that:

i) Every pair in the subset has a path to each other
i) The subset is not part of some larger subset with

property i)
 Weakly connected component (WCC) is the
connected component in the undirected graph
derived from the directed graph.

— Two nodes can be in the same WCC even if there no
directed path between them.
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SCC example
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The Web

 Broder’00

 Data from
Altavista (200
million pages)

 186M nodes
in the WCC
(90% of links)
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Popularity of Web Pages

* How do we expect the popularity of web

pages to be distributed?
— What fraction of web pages have k in-links?

— |f each page decides independently at random
whether to link to any given other page then the n
of in-links of a page is the sum of independent
random quantities -> normal distribution

— In this case, the number pages with k in-links
decreases exponentially in k

— s this true for the Web?
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Degree distribution for the Web

* Finding: degree distr. proportional to ~1/k?
* 1/k? decreases much more slowly than a
normal distribution
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Power Law vs Exponential

p(x)=x"
p(x)=e™

Power law

Exponential
i >
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Distribution of WCC and SCC

HCC distribution SCC distribution
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Reachability

 Followed links backwards and forward

Reachabilit ing inlink
@achabllity using mlinks Reachability using outlinks

I I I 1 I
I | I 1 I
g 1k reachabi Tty —
E le+89 SHELEC k hability - le+89 Outlink reachability —
< ¥ a _ o
E 1e+88 ‘ -‘C% 1e+88 | [ -
+ L -
¢ le+@? v 1e+o7 | ‘ |
n + - -
I le+B6 w 1e+@6 - ‘ 7
168688 -
2 E 100600 |- “ -
v loeoa - J ) « 10080 | .
1000 . = ’
E ] ¢ 1000 | =
108 | / . /
e s 2 1@ y, .
< 3 py
~ < —_
1 — : : : : L 1 1 1
1
a a.2 8.4 a.6 8.8 1
; a a.2 8.4 a.6 8.8 1
PRt BF SEAFLing nodes frac. of starting nodes
ELE UNIVERSITY OF

5

» CAMBRIDGE




Diameter of the Web

* 75% of the time there is no directed path
between two random nodes

* Average distance of existing paths: 16

* Average distance of undirected paths: 6.83

e Diameter in the SCCis at least 28
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Power Laws aka Scale Free Networks#

 We have seen that the degree distribution
followed a straight line in log-log

Inp, =-alnk +c
py=Ck™

* a defines the slope of the curve
e ais typically between 2 and 3.
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What does it mean?

Random Distribution

>

p{k) (number of nodes of size k)
p(k) (number of nodes of size k)
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What's a good model for
scale free networks

e Let’s use the web network as example:

* Pages are created in order (1,2,3..)

* Page j created and it links to an earlier page in the
following way:
— With prob. p, j chooses page i at random and links it;
— With prob. 1-p, j chooses page i and links to the page i

points to.
— Repeat.

The middle step is essentially a copy of the node i
behaviour...
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Preferential attachment

* Pages are created in order (1,2,3..)
* Page jcreated and it links to an earlier page in

the following way:
— With prob. p, j chooses page i at random and links
It;
— With prob. 1-p, j chooses a page z with prob.
proportional to z’s current number of in-links and
links to z (ie proportional to degree).

— Repeat.

Rich-get-richer model
If we run this for many pages the fraction of

pages with k in-links will be distributed
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Intuition

e With probability 1-p page j chooses a page |
with probability proportional to I’s number of
inlinks and creates a link to |.

* This mechanism predicts that the growth
happens so that
— A page’s popularity growth at a rate proportional
to its current value.
— The rich get richer effect amplifies the larger
values
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Preferential Attachment

e What have we shown?

 Thereis a “copying” behaviour happening in
these networks where node seem to emulate
other nodes.

* This is shown true for selection of books,
songs, web pages, movies etc.
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How predictable is the
rich-get-richer process?

* |s the popularity of items in the power law
predictable?

 Would a popular book still be popular if we go
back in time and start the process again?

* Experiments show it would not...
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Unpredictability [Salganik et al

* 48 songs, 14,000 participants, 8 servers
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View of the curve

 The way we have seen the curve so far...

A
number
of books \
\‘ There are j books that
\ have sold at least k
\\ copies.
\.\ We concentrated on this
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Let’s transform the function

 |f the initial function is a power law, this one is
to o0 not prove this)

-— Popularity means this

The j-th most popular
book has sold k
copies.

Niche tastes
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Search

— Information retrieval problem: synonyms (jump/
leap), polysemy (Leopard), etc

— Now with the web: diversity in authoring
introduces issues of common criteria for ranking
documents

— The web offers abundance of information: whom
do we trust as source?

e Still one issue: static content versus real time
— World trade center query on 11/9/01

— Twitter helps solving these issues these days
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Automate the Search

* When searching “Computer Laboratory” on
Google the first link is for the department’s page.

* How does Google know this is the best answer?
 We could collect a large sample of pages relevant
to “computer laboratory” and collect their votes

through their links.
* The pages receiving more in-links are ranked first.
* But if we use the network structure more deeply
we can improve results.
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Example: Query “newspaper”
Authorities

* Links are seen
as votes.

* Authorities
are
established:
the highly
endorsed
pages
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A Refinement: Hubs

e Numbers

(2
are reported O

back on the o‘

source page

(3] Q}\
and (6 O®

aggregate. .
* Hubs are - e
nigh value D R
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Principle of Repeated

e And we are now

reweighting the
authorities
o
* When do we =
stop? O ——
o —
i
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Repeating and Normalizing

* The process can be repeated

* Normalization:
— Each authority score is divided by the sum of all
authority scores
— Each hub score is divided by the sum of all hub
scores
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More Formally:

does the process converge?

* Each page has an authority a, and a hub h,

score
* Initially a=h. =1

* Ateachstep , - Ehj

Jj=>i

. a. =
* Normalize E ’
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The process converges

@ limit .042__

limit .008...

%
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PageRank

 We have seen hubs and authorities
— Hubs can “collect” links to important authorities
who do not point to each others
— There are other models: better for the web,
where one prominent can endorse another.

* The PageRank model is based on transferrable
Importance.
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PageRank Concepts

* Pages pass endorsements on outgoing links as
fractions which depend on out-degree

* |nitial PageRank value of each node in a
network of n nodes: 1/n.

* Choose a number of steps k.

e [Basic] Update rule: each page divides its
pagerank equally over the outgoing links and
passes an equal share to the pointed pages.
Each page’s new rank is the sum of received

pageranks.
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Example

* All pages start with PageRank=1/8

Step | A B C D E F G H

1 1/2 16 1)16 1/16 | 1/16 |1/16 | 1/16 | 1/8
2 3/1/4 1/32 | 1/32 |1/32 | 1/32 |1/16

A becomes important and
B,C benefit too at step 2
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Convergence

* Except for some special cases, PageRank
values of all nodes converge to limiting values
when the number of steps goes to infinity.

 The convergence case is one where the
PageRank of each page does not change
anymore, i.e., they regenerate themselves.
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Example of Equilibrium

113 |
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Problems with the basic PageRank |
Dead ends

* F,G converge to 2 and all the other nodesto O
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Solution: The REAL PageRank &

e [Scaled] Update Rule:

— Apply basic update rule. Then, scale down all values
by scaling factor s [chosen between 0 and 1].

— [Total network PageRank value changes from 1 to s]

— Divide 1-s residual units of PageRank equally over all
nodes: (1-s)/n each.

* |t can be proven that values converge again.
e Scaling factor usually chosen between 0.8 and 0.9
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Search Ranking is very important
to business

* A change in results in the search pages might
mean loss of business
— |.e., not appearing on first page.

* Ranking algorithms are kept very secret and
changed continuously.
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Examples of Google Bombs

Tue, Jan 27 2009 15:05 CET by Rene Beekman 1422 v

GOC)S[Q who is a failure?
()ogle o N

President of the United States - George W. Bush @ + ©' - Government
Article from Encarta Encyclopedia provides an overview of Bush's life.
www whitehouse. gov/president/ - 21k - Cached - Similar pages
arch for English results only. You can specify your searct Historians vs. George W. Bush @ @ . Palitics
Of 415 historians who expressed a view of President Bush's administration to this point
olig Qf Bulgaria =[S success or failure, 338 classified it as a failure and 77 as a ...

hnn.usfanticles/ 019 html - 38k - Cached - Similar pages

government site tells about the government and the cou

:s the history of the country, some basic statistics, nation: Heart failure - Wikipedia, the free encyclopedia

>vernment.bg/ - S_imﬂg_u)_%gg_g_ - Congestive heart failure (CHF), congestive cardiac failure (CCF) or just heart failure, i
condition that can result from any structural or functional ...
en.wikipedia.orgfwiki/Heart_failure - 146k - Cached - Similar pages

an nnn Kak aa uMm cnpetHem eanH Goodadleboml
2009 ... npoBan wn Kak Aa Hanpasum Googlebomb Ha egHo ToTanHo
NeHo NPaBuTEeNcTeo.

retpileffailure/ - 91k - Cached - Similar pages -
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Random Walks

e Starting from a
node, follow one
outgoing link with
an equal
probability
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PageRank as Random Walk

* The probability of being at a page X after k
steps of a random walk is precisely the
PageRank of X after k applications of the Basic
PageRank Update Rule

e Scaled Update Rule equivalent: follow a
random outgoing link with probability s while

with probability 1-s jump to a random node in
the network.
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