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Limits in functor categories

1. Let C and D be categories, where D has finite products. Show that the functor category
DC also has finite products, which are computed ‘pointwise’ – the object part of the
binary product F ×G of functors F,G : C→ D, for example, is given by the formula

(F ×G)(C) = F (C)×G(C)

where the product on the right is formed in D.

The pointwise construction of finite products in functor categories generalizes directly to finite
limits, which were introduced in exercise sheet 4, and by dualization to finite colimits.

Exponentials in presheaf categories

Unlike limits and colimits, exponentials can not be computed pointwise, and even if D is
cartesian closed, DC need not be so.

However, presheaf categories Ĉ = SetC
op

for small categories C are always cartesian closed,
which shows that Set has a special role among categories.

As sketched in the lecture, the formula for exponentials in Ĉ can be derived (and memo-
rized) using the following sequence of bijections (for F,G : Cop → Set):

(GF )(I) ∼= Ĉ(Y (I), GF ) ∼= Ĉ(Y (I)× F,G),

where the first bijection is given by the Yoneda lemma, and the second one is given by
uncurrying (compare exercise 10 on sheet 6). This suggests defining GF := Ĉ(Y (−)× F,G),
or more formally

GF : Cop → Set

I 7→ Ĉ(Y (I)× F,G)

f 7→ Ĉ(Y (f)× idF , idG)

2. Show that the above definition does indeed give an exponential of F and G in Ĉ. To
this end

(a) define the evaluation transformation

εG : GF × F → G,

(b) define the ‘currying’ operation Λ : Ĉ(H × F,G)→ Ĉ(H,GF ),

(c) show that for η : H × F → G, Λ(η) is the unique transformation making the
appropriate diagram commute.



The state monad

Let us recall the definition of the state monad and of its corresponding adjunction from
exercise sheet 6.

Let C be a cartesian closed category, and S ∈ obj(C). The functor

PS : C → C
A 7→ A× S
f 7→ f × S = f × idS

has a right adjoint
ES : C → C

A 7→ AS

f 7→ fS = Λ(f ◦ ε).

The unit η : idC → ES ◦ PS is given by

ηA = Λ(idA×S) : A→ (A× S)S ,

the components of the counit ε : PS ◦ ES → idC are the evaluation maps

εA : AS × S → A.

The state monad T : C → C is the monad induced by this adjunction; thus it is given by
T = ES ◦ PS , with the same unit η as the adjunction and the multiplication µ : T ◦ T → T
given by

µA = (εA×S)S : ((A×X)S × S)S → (A× S)S .

3. In this exercise, we want to understand the Kleisli category CT of the state monad.
The idea is that a morphism f : A →T B in CT (which is by definition a morphism
A → TB = (B × S)S in C) models a program with input A and output B, which can
access and modify some form of global state of the computer (e.g. RAM or disk, or more
abstractly a global variable). The object S represents the set of states.

To see the intuition behind the definition of T , note that morphisms f : A→ (B × S)S

are in bijection with ‘uncurried’ morphisms

f̌ = εA×S ◦ (f × idS) : A× S → B × S,

thus morphisms in the Kleisli category can be viewed as programs taking a value of
type A and a state as input, and returning a value of type B and a new state.

Given morphisms f : A → (B × S)S and g : B → (C × S)S , the uncurried morphisms
f̌ : A× S → B × S and ǧ : B × S → C × S can be composed directly. Show that

(g ◦T f )̌ = ǧ ◦ f̌ .

This formula can be viewed as explanation of the meaning of the composition in the
Kleisli category.



Dependent types

In the lecture I stated that slice categories can be used to model ‘dependent types’. The
following exercises aim to convey some of the basic ideas behind this.

Syntactically, a dependent type is a type depending on a variable of another type. The
standard example is the type

n:nat ` list(n)

of lists (of say integers) of length n, refining the type nat∗ of all lists of integers.
Given a dependent type x:A ` B(x), the dependent sum type

Σx:A . B(x)

should be viewed as the union of all the B(x), where x ranges over A. For example, the sum
Σn:nat . list(n) can be identified with the type nat∗ of all lists.

More generally, we can have types depending on several variables, and sum only over one
of them, e.g. one can imagine a type x:A, y:B(x) ` C(x, y) allowing to form the sum type
x:A ` Σy:B(x) . C(x, y).

Dependent product types x:A ` Πy:B(x) . C(x, y) can be formed analogously, but in this
exercise we focus on the sum types.

The following exercise aims to clarify the intuition behind the association of dependent
types and slice categories.

We require the following definition:

Definition 1. A equivalence of categories C and D is a pair H : C → D and K : D → C
of functors, such that K ◦H ∼= idC and H ◦K ∼= idD. If an equivalence of categories exists
between C and D, we call C and D equivalent.

4. Let I be a set and C a category. The category CI is defined as follows

• objects are families (Ci | i ∈ I) of objects of C
• a morphism from (Ci | i ∈ I) to (Di | i ∈ I) is a family (fi : Ci → Di | i ∈ I) of

morphisms in C
• composition is defined by (gi | i ∈ I) ◦ (fi | i ∈ I) = (gi ◦ fi | i ∈ I)

Show that SetI is equivalent to Set/I (i.e. construct an equivalence of categories be-
tween them).

5. Let C be a category in which all pullbacks exist. Given f : J → I in C, we can define
a functor f∗ : C/I → C/J whose object part is given by ‘pullback along f ’. More
precisely, for a : A→ I, f∗(a) is the left side of the pullback square

J ×I A //

f∗(a)

��
pb.

A

a

��
J

f
// I

Define the morphism part of f∗, and verify the functor axioms.



6. Postcomposition by f gives a functor

f! : C/J → C/I, b 7→ f ◦ b

Show that f! is left adjoint to f∗.

7. Using the equivalence of exercise 4, explain why in the case C = Set, f! can be viewed
as a disjoint union operation. For this, you may assume that I = 1.


