L108: Category theory and logic
Exercise sheet 6

Jonas Frey
jlf46@cl.cam.ac.uk

Revised: November 18, 2013, 15:19.

Functor categories

1. Consider functors F,G : A — B, and a natural transformation n : ' — G. Show that
n is an isomorphism in the functor category B* if and only if all its components 14 for
A € obj(A) are isomorphisms in B.

2. Consider categories A, B, C, functors F,G : A - B, H, K : B — C, and natural trans-
formations n: F'— G and 6 : H — K.
(a) Using H and 7, define a natural transformation of type H o F — H o G.
(b) Using 0 and G, define a natural transformation of type H o G — K o G.
(c) Define a natural transformation of type Ho FF — K o G
These three construction are known as whiskering or horizontal composition. The word

horizontal is used, since one imagines the functors and natural transformations arranged
in this pattern:

A A
AT BT C
G H

Following the same image, the composition of natural transformations in the functor
categories B and C® may be called vertical composition.

3. Using the constructions of the previous exercise, define a functor of type B* — CA
representing horizontal composition with K.

4. In the same way, define a functor of type C® — C* representing horizontal composition
with F'.

Adjunctions via unit and counit

In the lecture, we first defined adjunctions as pairs F': A — B, U : B — A of functors together
with a family

oap:B(FA,B) = A(A,UB)

of bjections which are natural in A, B. We later stated that the information contained in ¢
can be equivalently expressed by a pair

n:idy - UoF, e:FolU —idp



of natural transformations', subject to the condition that the triangles

nus

uB—""2UFUB
N | L

FUFA ~FA

commute for all A € obj(A) and B € obj(B); and sketched a proof that these two presentations
are indeed equivalent, i.e. that ¢ and 7, e are interdefinable. The following exercises fill in
some of the details omitted in the proof.

For the following exercises, we fix a pair F': A - B, U : B — A of functors.

5. Given a natural family ¢4 p : B(FA, B) = A(A,UB) of bijections, we define n and ¢
by
na = ¢(idpa) for A € obj(A)
ep = ¢ (idys) for B € obj(B)

(as in the lecture, we often omit subscripts of ¢)

Show that these definition do indeed give rise to natural transformations, and that these
satisfy the axioms (7).

6. Conversely, given 7 :idy — U o F, e : F o U — idg, Show that the definition ¢(f) :=
Ufona for f: FA — B gives rise to a natural family ¢4 g : B(F'A, B) =N A(A,UB) of
bijections.

7. Show that the constructions of 5. and 6. are mutually inverse.

Examples of adjunctions

The following exercises are most easily solved by using the theorem characterizing the exis-
tence of left adjoints given in the lecture (and the dual theorem in the case of right adjoints).

8. Show that the forgetful functor U : Preord — Set which assigns to each preorder
(D, <) its underlying set D has a left adjoint, and give an explicit definition of this
functor.

9. Show that the forgetful funcor U : Preord — Set has a right adjoint, and give a
definition.

10. Let C be a cartesian closed category, and let B € obj(C). Show that the functor

Prg: C —» C
A — AxB
f — indB

has a right adjoint.

91 is called the unit of the adjunction, and e the counit



11. A pointed set is a pair (X, z) where X is a set, and z € X is an element. A morphism
of pointed sets f: (X,z) — (Y,y) is a function f : X — Y such that f(z) = y. Pointed
sets and their morphisms form a category denoted by Set,.

There is an evident forgetful functor U : Set, — Set forgetting the designated element.
Show that this forgetful functor has a left adjoint.

Monads

The adjunctions considered in the previous examples give rise to monads that are known from
functional programming.

12. Describe explicitly the monad arising from the adjunction F' 4 U : Mlon — Set between
sets and monoids.

This monad is called the list monad.

13. Describe explicitly the monad arising from the adjunction in exercise 11.
This is Haskell’s Maybe monad.

14. Describe explicitly the monad arising from the adjunction in exercise 10. For this,
assume that C = Set.

This monad is known as the state monad, B is viewed as a set of abstract states that
the program can be in.



