L108: Category theory and logic Exercise sheet 5

Jonas Frey jlf460cl.cam.ac.uk

Revised: November 11, 2013, 14:19.

Finite products

Let \mathbb{C} be a category with finite products.

1. For morphisms $f: A \to B, h: B \to X, k: B \to Y$ in \mathbb{C} , show that

$$\langle h, k \rangle \circ f = \langle h \circ f, k \circ f \rangle.$$

For morphisms $f: A \to B$, $g: A \to C$, $h: B \to X$, $l: C \to Y$, show that

$$(h \times l) \circ \langle f, g \rangle = \langle h \circ f, l \circ g \rangle.$$

- 2. For $A \in obj(\mathbb{C})$, we define the diagonal map δ_A by $\delta_A = \langle id_A, id_A \rangle : A \to A \times A$. Show that $\delta_B \circ f = (f \times f) \circ \delta_A$ for $f : A \to B$.
- 3. Show that the mappings $(A, B) \mapsto A \times B$ and $(f, g) \mapsto f \times g$ define a functor $P : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$.
- 4. Composing the functor P with the diagonal functor $\delta_{\mathbb{C}} : \mathbb{C} \to \mathbb{C} \times \mathbb{C}$, we obtain the functor

$$\begin{aligned} D: \mathbb{C} &\to \mathbb{C} \\ A &\mapsto A \times A \\ f &\mapsto f \times f \end{aligned}$$

Show that the diagonal mappings δ_A for $A \in \mathbb{C}$ are the components of a natural transormation $\delta : \mathrm{id}_{\mathbb{C}} \to D$. (In particular, draw the relevant naturality square)

Define natural transformations $\lambda, \rho : D \to \mathrm{id}_{\mathbb{C}}$ whose components are the projections π_1 and π_2 , respectively. (Again, verify naturality and draw the relevant square)

Slice categories

Let \mathbb{C} be a category, and $I \in obj(\mathbb{C})$. The *slice category* \mathbb{C}/I is the category whose

- objects are pairs $(A \in obj(\mathbb{C}), F : A \to I)$, and whose
- morphisms from (A, f) to (B, g) are morphisms $h : A \to B$ in \mathbb{C} such that $g \circ h = f$.

- Composition and identities are given by composition and identities in \mathbb{C} .
- 5. Show that \mathbb{C}/I has a terminal object. Give a sufficient condition for the existence of initial objects in \mathbb{C}/I .
- 6. Let M be a set. Show that \mathbf{Set}/M has binary (and thus finite) products.
- 7. Give a characterization of products in \mathbb{C}/I , using a concept from the previous exercise sheet.

Coproducts

Coproducts are the dual concept to products. In other words, coproducts in \mathbb{C} are products in \mathbb{C}^{op} . Concretely, a coproduct of objects A, B of a category \mathbb{C} is an object $A + B^1$ together with *injection* maps $\sigma_1 : A \to A + B$, $\sigma_2 : B \to A + B$ such that for all objects Y and morphisms $f : A \to Y, g : B \to Y$, there exists a unique $[f,g] : A+B \to Y$ with $[f,g] \circ \sigma_1 = f$ and $[f,g] \circ \sigma_2 = g$.

- 8. The disjoint union of sets A, B is defined by $A \uplus B = A \times \{0\} \cup B \times \{1\}$. Show that the disjoint union of two sets is a coproduct in **Set**.
- 9. Show that **Preord** has binary coproducts.

Cartesian closed categories

Let \mathbb{C} be a cartesian closed category.

10. For fixed $C \in obj(\mathbb{C})$, show that the assignment $B \mapsto C^B$ gives rise to a functor of type $\mathbb{C}^{op} \to \mathbb{C}$. For this you have to construct the *morphism part* of the functor, i.e. define a function of type

$$\mathbb{C}(A,B) \to \mathbb{C}(C^B,C^A)$$

for all $A, B \in obj(\mathbb{C})$, and then you have to verify the functor axioms.

10'. Optional: Extending the previous exercise, show that the assignment $(B, C) \mapsto C^B$ gives rise to a functor of type $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$.

¹In many (older) books, coproducts are also denoted by $A \coprod B$.