L108: Category theory and logic Exercise sheet 2

Jonas Frey jlf46@cl.cam.ac.uk

Revised: October 24, 2013, 11:31.

1. List all possible functors of types $1 \rightarrow \mathbf{Span}$ and $2 \rightarrow \mathbf{Span}$ where 1 is the category with one object and only the identity morphism, and 2 is the category with two objects and one non-identity morphism between them (**Span** is defined on the first exercise sheet).

What are functors of type $\mathbf{1} \to \mathbb{C}$ and $\mathbf{2} \to \mathbb{C}$ for an arbitrary category \mathbb{C} ?

- 2. Let Σ be a set, and let Σ /Mon be the category where
 - objects are pairs $((M, \cdot, e), f)$ where (M, \cdot, e) is a monoid and $f : \Sigma \to M$ is a function.
 - morphisms from $((M, \cdot, e), f)$ to $((N, \cdot, e), g)$ are monoid homomorphisms $h : (M, \cdot, e) \to (N, \cdot, e)$ such that the triangle

commutes, i.e. $h \circ f = g$.

Show that the pair $((\Sigma^*, \cdot, \varepsilon), i)$ is an initial object in Σ /**Mon**, where $(\Sigma^*, \cdot, \varepsilon)$ is the monoid of lists over Σ with concatenation as multiplication and the empty list ε as unit, and $i : \Sigma \to \Sigma^*$ is the function that sends each element $s \in \Sigma$ to the corresponding list [s] of length one.

3. Define a functor List : Set \rightarrow Mon whose object part is given by

 $\operatorname{List}(A) = A^*$ (the monoid of lists on A).

Prove that your definition is well defined (i.e. verify the axioms in the definition of functor).

- 4. Given a set A, a *finite multiset* on A is a function $m : A \to \mathbb{N}$ with m(a) = 0 everywhere except for a finite number of $a \in A$. Define F(A) to be the set of finite multisets on A.
 - (a) Define a structure of commutative monoid on F(A), using the additive monoid structure on \mathbb{N} (in this case, it is more suggestive to write the monoid operation as addition, not as multiplication).
 - (b) Using this monoid structure, define a functor $F : \mathbf{Set} \to \mathbf{Mon}$.

5. Given a set A, we can define a monoid (PA, \cup, \emptyset) , where PA is the power set (the set of all subsets) of A, the monoid operation is given by union \cup , with the empty set \emptyset as unit element.

Define a functor $P : \mathbf{Set} \to \mathbf{Mon}$ whose object part is $P(A) = (PA, \cup, \emptyset)$.

- 6. Define natural transformations η : List $\rightarrow F$ and $\theta: F \rightarrow P$.
- 7. The functor $N : \mathbf{Set} \to \mathbf{Mon}$ is defined by

$$N: \mathbf{Set} \to \mathbf{Mon}$$
$$A \mapsto (\mathbb{N}, +, 0)$$
$$f \mapsto \mathrm{id}_{\mathbb{N}}$$

(This is the constant functor with value $(\mathbb{N}, +, 0)$.)

Define natural transformations of type List $\to N$ and $F \to N$ using the length of a list and the 'size' of a multiset.