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Module L101: Machine Learning for Language Processing

Introduction

• So far described a number of models for word sequences

– most common are based on N -grams and mixtures of N -grams

• In this lecture we will examine:

– the application of N -grams (and extensions) to topic clustering;
– an alternative generative model latent Dirichlet allocation

• The last slides will not be covered in the lectures - briefly mention

– what happens as the number of clusters tends to infinity
– infinite Gaussian mixture models
– Dirichlet processes
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Module L101: Machine Learning for Language Processing

Unsupervised Document Clustering

• Use a topic-dependent N -gram language model to perform clustering

0 1w w wN w
N+1

z
– word sequence w = {w1, . . . , wN}

– start, w0, and end wN+1 symbols added

– z indicator variable over topics s1, . . . , sK

– plate repeated for every document

• Training data fully observed (supervised training) standard N -gram training

– BUT interested in unsupervised clustering - indicator variable z unobserved

• Likelihood of one document with word sequence w can be written as

P (w) =
K
∑

k=1

P (sk)P (w|sk) =
K
∑

k=1

P (sk)
N+1
∏

i=1

P (wi|wi−1, sk)
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Module L101: Machine Learning for Language Processing

Unsupervised Clustering

• The likelihood has been written as marginalising over the latent variable

– standard mixture model - use EM BUT interested in clustering documents

• Rather than using the “soft” assignment in EM, use a hard assignment

z[l]r = argmax
sk

{

P (sk|λ
[l])P (w(r)|sk,λ

[l])
}

– compare to EM where at iteration l compute P (sk|w,λ[l])
– allows documents to be clustered together (unique label for each document)

For parameters of component sk : λ
[l+1]
k = argmax

λ











∏

r:z
[l]
r =sk

P (w(r)|λ)











• Iterative procedure (similar to Viterbi training) - example of K-means clustering

– can initialise model parameters by using K randomly selected examples
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Module L101: Machine Learning for Language Processing

Language Model Components

• For simplicity only consider a unigram language model - for BNs below

– inner plate repeated for each word (start/end symbols ignored as unigram)
– outer plate for each document

z w z w

∑K

k=1P (sk)
∏N

i=1P (wi|sk)
∏N

i=1

(

∑K

k=1P (sk)P (wi|sk)
)

• Interesting to contrast two forms of latent variable model

– (left) indicator variable z over space of language models
– (right) indicator variable z over space of language model predictions

• Possible to combine latent variable models (a hierarchical model)
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Module L101: Machine Learning for Language Processing

Bayesian Approaches

• Consider a generative model for class ωj (supervised training)

– training data: D = {x1 . . . ,xn}
– parametric form of distribution (the model), M, is known (and fixed)

with (unknown) parameters θ

• Rather than estimating the parameters of the model, θ̂, use a distribution

– from training data obtain the posterior distribution over model parameters

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
Note MAP θ̂ = argmax

θ

{p(θ|D,M)}

– p(θ|M) is the prior distribution over the model parameters

• Likelihood of an observation x then computed as

p(x|D,M) =

∫

p(x|θ,M)p(θ|D,M)dθ Note MAP p(x|D,M) ≈ p(x|θ̂,M)
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Module L101: Machine Learning for Language Processing

Distribution of the Mean Estimate

• Consider Bayesian estimation of the mean µ of a Gaussian distribution

1

-4 -2 2 4

µ

1

30

 20

5

10

p(µ|x1, ... , xn)

0

• Posterior p(µ|D,M) variation (from DHS)

– Gaussian distributed - µ ∼ N (µ̂, Σ̂)
– prior N (0,Σp)

µ̂ =
(

nΣ−1 +Σ
−1
p

)−1

(

Σ
−1

n
∑

i=1

xi

)

Σ̂ =
(

nΣ−1 +Σ
−1
p

)−1

• Shape of posterior distribution changes as n increases

– the posterior becomes more sharply peaked (reduced variance)
– MAP estimate (the mode of the distribution) moves towards ML estimate
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Module L101: Machine Learning for Language Processing

Latent Dirichlet Allocation

• Interested in applying Bayesian approaches to language processing

– consider a mixture-of-unigrams language model

P (w) =
N
∏

i=1

K
∑

k=1

P (sk)P (wi|sk)

where P (sk) is estimated from training data
– alternatively consider a Bayesian version over the topic priors

P (w|α) =

∫

p(θ|α)

(

N
∏

i=1

K
∑

k=1

P (sk|θ)P (wi|sk)

)

dθ

where p(θ|α) obtained from the training data

What form of distribution/latent variable model to use?
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Module L101: Machine Learning for Language Processing

(Reminder) Multinomial Distribution

• Multinomial distribution: xi ∈ {0, . . . , n}

P (x|θ) =
n!

∏d

i=1 xi!

d
∏

i=1

θxi
i , n =

d
∑

i=1

xi,

d
∑

i=1

θi = 1, θi ≥ 0

• When n = 1 the multinomial distribution simplifies to

P (x|θ) =
d
∏

i=1

θxi
i ,

d
∑

i=1

θi = 1, θi ≥ 0

– a unigram language model with 1-of-V coding (d = V the vocabulary size)

– xi indicates word i of the vocabulary observed, xi =

{

1, word i observed
0, otherwise

– θi = P (wi) the probability that word i is seen
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Module L101: Machine Learning for Language Processing

(More) Probability Distributions

• Dirichlet (continuous) distribution with parameters α

p(x|α) =
Γ(
∑d

i=1αi)
∏d

i=1Γ(αi)

d
∏

i=1

xαi−1
i ; for ”observations”:

d
∑

i=1

xi = 1, xi ≥ 0

– Γ() is the Gamma distribution
– Conjugate prior to the multinomial distribution

(form of posterior p(θ|D,M) is the same as the prior p(θ|M))

• Poisson (discrete) distribution with parameter ξ

P (x|ξ) =
ξx exp(−ξ)

x!

– probability of the number of events in a specific interval
– here used for number of words in a document
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Module L101: Machine Learning for Language Processing

Dirichlet Distribution Example

(6,2,2) (3,7,5)

(6,2,6)(2,3,4)

• Note: x+ y + z = 1

• Vector: (α1, α2, α3)
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Module L101: Machine Learning for Language Processing

Latent Dirichlet Allocation Bayesian Network

w

β

α θ z

• Bayesian Network for Latent Dirichlet Allocation (LDA) is shown above

– explicitly includes dependence on model parameters λ = {α,β}

P (w|α,β) =

∫

p(θ|α)

(

N
∏

i=1

K
∑

k=1

P (sk|θ)P (wi|sk,β)

)

dθ

– z is an indicator variable for one of the K topics: {s1, . . . , sK}
– inner plate is repeated for N words, outer plate is repeated for R documents

• Bayesian approach learn posterior distribution of the component priors, θ,

– Dirichlet distribution p(θ|α) = p(θ|D,M), and noting P (sk|θ) = θk
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Module L101: Machine Learning for Language Processing

LDA Generative Process

• LDA assumes the following generative process for the words w is a document

1. Choose length of document - N ∼ Poisson(ξ)

2. Choose parameters of multinomial - θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose topic: zn ∼ Multinomial(θ)

(b) Choose word: wn from multinomial probability conditioned on topic zn
with parameters β

• The parameters that need to be estimated for LDA

– α = {α1, . . . , αK}: K parameters
the prior distribution over the multinomial parameters

– β = {β11, β1V , . . . , βK1, . . . , βKV }: KV parameters

Note βki ≥ 0,
∑V

i=1 βki = 1 ∀k, i - this is the equivalent of topic-unigrams
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Module L101: Machine Learning for Language Processing

LDA Parameter Estimation

• Given corpus of documents {w(1), . . . ,w(R)} need to estimate α,β

L(α,β) =
R
∑

r=1

log
(

P (w(r)|α,β)
)

• Unfortunately likelihood calculation is intractable need to compute

P (w|α,β) =
Γ(
∑K

k=1αk)
∏K

k=1 Γ(αk)

∫

(

K
∏

k=1

θ
αk−1
k

)





N
∏

i=1

K
∑

k=1

θk

V
∏

j=1

(βkj)
I(wi,j)



 dθ

– word indicator: I(wi, j) =

{

1, wi = word j in the vocabulary
0, otherwise

– P (sk|θ) = θk and P (wi|sk,β) = βki

• Not possible to use EM: require p(θ,z|w,α,β) = p(θ,z,w|α,β)
P (w|α,β)
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Module L101: Machine Learning for Language Processing

Variational EM (Reference)

w

β

α θ z

γ

θ

φ

z

Latent Dirichlet Allocation Variational Approximation

• LDA can be estimated using variational EM with the mean-field approximation

– use a variational approximation q(θ,z|γ, φ) - see diagram on right

q(θ,z|γ,φ) = q(θ|γ)
N
∏

i=1

q(zi|φi)

– parameters - minimise KL-divergence: KL(q()||p()) =
∫

p(x) log (q()/p()) dx

{γ[l],φ[l]} = argmin
γ,φ

{

KL(q(θ,z|γ,φ)||p(θ,z|w,α[l],β[l])
}
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Module L101: Machine Learning for Language Processing

LDA and Topic Mixture of Unigrams

w

β

α θ z w

β

α

θ

zq

Latent Dirichlet Allocation Topic Mixture of Unigrams

• Latent Dirichlet allocation - parameters K(1 + V ) - continuous mixture

P (w|α,β) =
Γ(
∑K

k=1αk)
∏K

k=1 Γ(αk)

∫

(

K
∏

k=1

θ
αk−1
k

)





N
∏

i=1

K
∑

k=1

θk

V
∏

j=1

(βkj)
I(wi,j)



 dθ

• Topic mixture of unigrams - parameters M +K(M + V ) - discrete mixture

P (w|α,β,θ) =
M
∑

m=1

αm





N
∏

i=1

K
∑

k=1

θmk

V
∏

j=1

(βkj)
I(wi,j)
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Module L101: Machine Learning for Language Processing

Properties of LDA

• LDA is a generative model of a document

– compact model of the data
– infinite component priors represented by K-parameter distribution p(θ|α)
– can be combined with standard language model smoothing for β

• Consider using LDA as a generative model for classification for

– for each class ωj estimate {α(j),β(j)} using all documents from class ωj

– estimate the prior for each class P (ωj)
– perform classification for sequence w based on

ω̂ = argmax
ωj

{

P (ωj)P (w|α(j),β(j))
}

• LDA has also been used for a range of language processing applications
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Module L101: Machine Learning for Language Processing

How Many Topics?

• So far not consider the number of topics, K, for LDA

– how about using a Bayesian approach

P (w|α(1), . . . ,α(∞)) =

∞
∑

K=1

P (K)

∫

p(θ(K)|α(K))

(

N
∏

i=1

K
∑

k=1

P (sk|θ
(K))P (wi|sk,β)

)

dθ(K)

– each of the priors of infinite mixture models has a Dirichlet distribution

• There’s a infinite number of components

– unfortunately an infinite number of parameters α(1), . . . ,α(∞),β to train

Can we keep the infinite model, but make it tractable?

• Non-parametric Bayesian approaches: (hierarchical) Dirichlet Processes
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Module L101: Machine Learning for Language Processing

Gaussian Mixture Models

• Consider simpler (illustrative) example - the Infinite Gaussian Mixture Model

• Standard form of M -component Gaussian Mixture Model (GMM) is

p(x|θ,β) =
M
∑

m=1

P (cm|θ)p(x|cm,β) =
M
∑

m=1

P (cm|θ)N (x;µm,Σm)

Interested in what happens as M → ∞?

• Must use Bayesian approaches as the number of parameters infinite

– what sort of prior distributions to use?

• Introduce prior distributions {α0,β}

– α0 - prior parameter for the Dirichlet distribution
– β - prior distribution for Gaussian components
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Module L101: Machine Learning for Language Processing

Infinite Gaussian Mixture Models

θ xz

β

β

0G

θ xzα 0

Gaussian Mixture Model Infinite Gaussian Mixture Model

• From the Bayesian network above

p(x1, . . . ,xN |α0, G0) =

∫ ∫

p(θ|α0)p(β|G0)

N
∏

i=1

M
∑

m=1

P (cm|θ)p(xi|cm,β)dθdβ

where: θ|α0 ∼ Dirichlet
(

α0
M
, . . . , α0

M

)

; βm ∼ G0; cm|θ ∼ Multinomial(θ)

• Estimate the hyper-parameters from training data, {x1, . . . ,xN} - maximise

L(α0, G0) = log (p(x1, . . . ,xN |α0, G0))

THE END - SLIDES ARE FOR REFERENCE FROM HERE
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Module L101: Machine Learning for Language Processing

Sample-Based Approximations

• Simple approach to approximate integrals is to use

∫

f(x)p(x|θ)dx ≈
1

N

N
∑

i=1

f(x(i)); x(i) ∼ p(θ)

– as N → ∞ the approximation will become an equality
– N needs to increase as dimension x increases - need to sample the space

marginalising is simply sampling

• If a sample can’t be directly generated from the multivariate distribution p(θ)

– Gibbs sampling from conditional distributions can be used

– assume that we have samples x
(i)
1 , . . . , x

(i)
k−1, x

(i)
k+1, x

(i)
d generate x

(i)
k

– sample from
p(xk|x1, . . . , xk−1, xk+1, xd, θ)

– assumes that possible to sample from the conditional
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Module L101: Machine Learning for Language Processing

Gaussian Mixture Model Sampling

θ xz

β p(x|θ,β) =
M
∑

m=1

P (cm|θ)p(x|cm,β)

=

M
∑

m=1

P (cm|θ)p(x|βm)

• Sampling approach from distribution comprises

1. Generate component indicator zn ∼ Multinomial(θ)
2. Generate observation: xn ∼ N (βzn)

• Simple to train using EM (see lecture 5)

– non-Bayesian - point estimates of the model parameters {θ,β}
– number of components M fixed
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Module L101: Machine Learning for Language Processing

IGMM Sampling Procedure

How to generate samples from infinite components?

• Gibb’s Sampling process to generate {x1, . . . ,xN} for N samples

1. Generate component indicator zn|z−n (z−n = {z1, . . . , zn−1})

P (zn = cj|z−n, α0) =











∑n−1
i=1 1(zi,cj)

n−1+α0
cj represented

α0
n−1+α0

cj unrepresented

2. If component indicted by zn is unrepresented: βzn ∼ G0

3. Generate observation: xn ∼ N (βzn)

• At most N of the infinite possible samples represented
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Module L101: Machine Learning for Language Processing

IGMM Hyper-Parameter Training

• Using Gibb’s sampling to training hyper-parameters of G0

– sampling process to generate {z(l),β(l)} for these N samples, {x1, . . . ,xN}

1. Generate component indicators z(l)|z
(l)
−n,β

(l−1),xn (dropped dependence)

P (z(l)n = cj|α
(l−1)
0 , G

(l−1)
0 ) ∝























∑n−1
i=1 1(z

(l)
i

,cj)

n−1+α
(l−1)
0

p(xn|β
(l−1)
j ) cj represented

α
(l−1)
0

n−1+α
(l−1)
0

∫

p(xn|β)p(β|G
(l−1)
0 )dβ cj unrepresented

2. Foreach represented component cj, j ∈ {1, . . . , krep}

sample component mean and variance: β
(l)
j = {µ

(l)
j ,Σ

(l)
j } ∼ G

(l−1)
0

3. Update hyper-parameters {α
(l)
0 , G

(l)
0 } using component values β

(l)
1 , . . . ,β

(l)
krep

(a) increment the counter l = l + 1
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Module L101: Machine Learning for Language Processing

IGMM Classification

• So how can we perform classification - need the class-likelihood (prior simple)

– consider observation x given training data for class ωj: D = {x1, . . . ,xN}

p(x|D, α0, G0) =
p(x,D|α0, G0)

p(D|α0, G0)
=
p(x,x1, . . . ,xN |α0, G0)

p(x1, . . . ,xN |α0, G0)

– clearly a non-parametric model - explicit dependence on training observations

• Use a sample-based approximations for numerator/denominator thus

p(x1, . . . ,xN |α0, G0) ≈
1

L

L
∑

l=1

N
∏

i=1

p(xi|z
(l),β(l))

– follow hyper-parameter training without update to hyper-parameters
– similar for p(x,x1, . . . ,xN |α0, G0)
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Module L101: Machine Learning for Language Processing

Dirichlet Processes

• Dirichlet Processes are a generalisation of the Dirichlet distribution

– both can be viewed as distributions over distributions
– BUT Dirichlet processes act over infinite components

• Model has the form
G ∼ DP(α0, G0);

– G0 is the base measure (distribution)
– α0 is the concentration parameter

• If the measure is parametrised with θ

– each draw of G from G0 yields θk ∼ G0

– δθk indicates a δ function at the parameters for draw k , θk

– Reminder: ∫

f(x|θ)δθkdθ = f(x|θk)
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Module L101: Machine Learning for Language Processing

Example Dirichlet Process

wθ

G

α 0

0

G βz

• The likelihood of the word sequence w = {w1, . . . , wN} can be expressed as

P (w|α0, G0) =

∫

P (G|α0, G0)

∫

P (β)

∫

p(θ|G)P (w|θ,G,β)dθdβdG

– G is distributed according to the Dirichlet Process DP(α0, G0)
– if K is the number of components associated with the G

P (w|θ,G,β) =
N
∏

i=1

K
∑

k=1

P (sk|θ)P (wi|sk,β)

• BUT can’t share cluster parameters (β) across different draws

– no relationship between clusters ... hierarchical Dirichlet priors
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Module L101: Machine Learning for Language Processing

Dirichlet Processes Generative Process
• Can’t directly sample from Dirichlet process - use Gibb’s sampling

– behaviour of θn given previous n− 1 draw θ1, . . . , θn−1

θn|θ1, . . . ,θn−1, α0, G0 ∼
α0

n− 1 + α0
G0 +

n−1
∑

i=1

1

n− 1 + α0
δθi

– this is the equivalent of the generative process where

θn =

{

θi with probability 1
n−1+α0

for 1 ≤ i ≤ (n− 1)

θ ∼ G0() with probability α0
n−1+α0

• A draw from a Dirichlet process (stick-breaking representation)

G =
∞
∑

k=1

πkδθk; θk ∼ G0; ψk ∼ Beta(1, α0); πk = ψk

k−1
∏

i=1

(1− ψk)

– Google Chinese Restaurant Process for a simple example
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