Support Vector Machines and Kernels for Language Processing

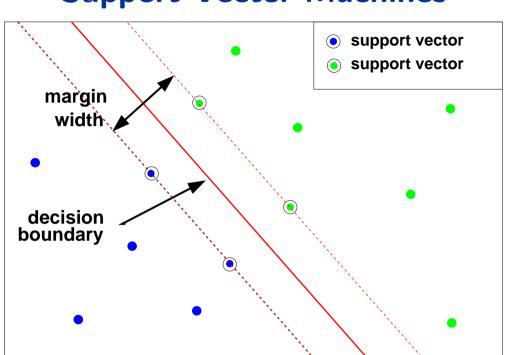
Mark Gales

Lent 2014

Machine Learning for Language Processing: Lecture 7

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science



Support Vector Machines

- SVMs are a maximum margin, binary, classifier:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - may be kernelised training/classification a function of dot-product $(\mathbf{x}_i^\mathsf{T}\mathbf{x}_j)$.
- Successfully applied to many tasks how to apply to speech and language?

Training SVMs

• The training criterion can be expressed as

$$\{\hat{\mathbf{w}}, \hat{b}\} = \operatorname*{argmax}_{\mathbf{w}, b} \left\{ \min \left\{ || \boldsymbol{x} - \boldsymbol{x}_i ||; \mathbf{w}^{\mathsf{T}} \boldsymbol{x} + b = 0, i = 1, \dots, n \right\} \right\}$$

• This can be expressed as the constrained optimisation $(y_i \in \{-1, 1\})$

$$\{\hat{\mathbf{w}}, \hat{b}\} = \operatorname*{argmin}_{\mathbf{w}, b} \left\{\frac{1}{2} ||\mathbf{w}||^2\right\} \quad \text{subject to } y_i \left(\mathbf{w}^{\mathsf{T}} \boldsymbol{x}_i + b\right) \ge 1 \quad \forall i$$

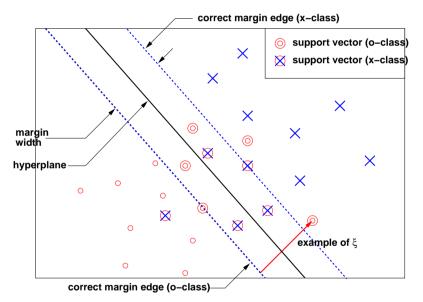
• In practice the dual is optimised

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{\boldsymbol{\alpha}} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j \right\}, \quad \hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \boldsymbol{x}_i$$

subject to $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i y_i = 0$ (\hat{b} is determined given the values of $\hat{\alpha}$)

Non-Separable Data

- Data is not always linearly separable there's no margin!
 - how to train a system in this (realistic) scenario



- Introduce slack-variables
 - for each training sample x_i introduce ξ_i
 - relaxes constraint: $y_i \left(\mathbf{w}^\mathsf{T} \boldsymbol{x}_i + b \right) \ge 1 \xi_i$
- Modifies the training criterion to be constraints: $y_i \left(\mathbf{w}^{\mathsf{T}} \boldsymbol{x}_i + b \right) \ge 1 - \xi_i, \quad \xi_i \ge 0$ $\{ \hat{\mathbf{w}}, \hat{b} \} = \operatorname*{argmin}_{\mathbf{w}, b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i \right\}$
- Tunable parameter C balances margin and upper-bound on training errors
 - again dual form is optimised, but now constraint modified to be: $0 \le \alpha_i \le C$

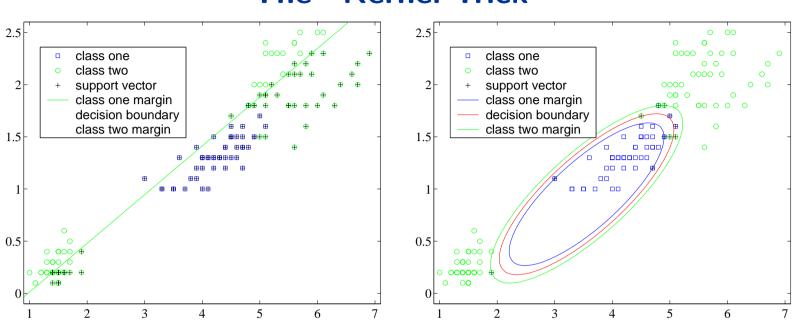
Classification with SVMs

 \bullet Given trained parameters $\pmb{\alpha}$ and b classification is based on

$$g(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b = \sum_{i=1}^{n} y_i \alpha_i \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x} + b, \quad \hat{\omega} = \begin{cases} \omega_1, & \text{if } g(\boldsymbol{x}) > 0\\ \omega_2, & \text{otherwise} \end{cases}$$

- this yields a linear decision boundary limited
- classification is based on observations where $\alpha_i>0$ the support vectors
- Consider a non-linear transform of the features $\phi(x)$ the feature-space
 - a linear decision boundary in the feature-space is non-linear in original space
- Training and classification can then be implemented in this transformed space
 - classification again based on the support vectors

$$g(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}) + b = \sum_{i=1}^{n} y_i \alpha_i \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}) + b, \quad \hat{\omega} = \begin{cases} \omega_1, & \text{if } g(\boldsymbol{x}) > 0\\ \omega_2, & \text{otherwise} \end{cases}$$



The "Kernel Trick"

• Consider a simple mapping from a 2-dimensional to 3-dimensional space

$$\boldsymbol{\phi}\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}x_1^2\\\sqrt{2}x_1x_2\\x_2^2\end{array}\right], \quad k(\boldsymbol{x}_i,\boldsymbol{x}_j) = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_j)$$

• Efficiently implemented using a Kernel: $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_j) = (\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j)^2$

́В`

Е

Kernels for Language Processing

- Many standard kernels for fixed length feature vectors
- In language processing applications, data is not always represented by vectors
 - ... cat sat on the mat .. word sequences (variable length sequences)

trees (for example parse trees)

graphs showing connections between variables

- Different kernels are used depending on the structures being compared
 - many are based on convolutional kernels

в

D

- an important consideration is the computational cost for particular form

String Kernel

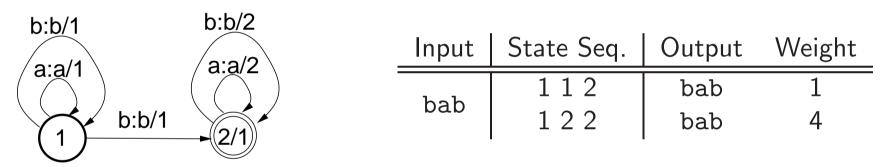
- For sequences input space has variable dimension:
 - use a kernel to map from variable to a fixed length;
 - Fisher kernels are one example for acoustic modelling;
 - String kernels are an example for text.
- Consider the words cat, cart, bar and a character string kernel

		c-a	c-t	c-r	a-r	r-t	b-a	b-r
$\phi(c)$	at)	1	λ	0	0	0	0	0
$oldsymbol{\phi}(extsf{ca}$	$\mathtt{art})$	1	λ^2	λ	1	1	0	0
$oldsymbol{\phi}(extbf{b})$	ar)	1 1 0	0	0	1	0	1	λ
	•							
k(cat,car)	, $k(c$	k(cat,bar)=0,			k(cart,bar)=1			

- Successfully applied to various text classification tasks:
 - how to make process efficient (and more general)?

Weighted Finite-State Transducers

- A weighted finite-state transducer is a weighted directed graph:
 - transitions labelled with an input symbol, output symbol, weight.
- An example transducer, T, for calculating binary numbers: a=0, b=1

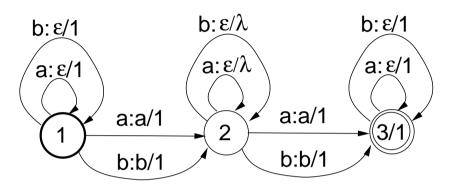


For this sequence output weight: $wgt [bab \circ T] = 5$

- Standard (highly efficient) algorithms exist for various operations:
 - combining transducer, $T_1 \circ T_2$;
 - inverse, T^{-1} , swap the input and output symbols in the transducer.
- May be used for efficient implementation of string kernels.

Rational Kernels

• A transducer, T, for the string kernel (gappy bigram) (vocab $\{a, b\}$)



The kernel is: $k(\boldsymbol{w}_i, \boldsymbol{w}_j) = \texttt{wgt} \left[\boldsymbol{w}_i \circ (\texttt{T} \circ \texttt{T}^{-1}) \circ \boldsymbol{w}_j \right]$

- This form can also handle uncertainty in decoding (w = w₁,..., w_N):
 lattices can be used rather than the 1-best output.
- This form encompasses various standard feature-spaces and kernels:
 - bag-of-words and N-gram counts, gappy N-grams (string Kernel),
- Successfully applied to a multi-class call classification task.

Tree Kernels

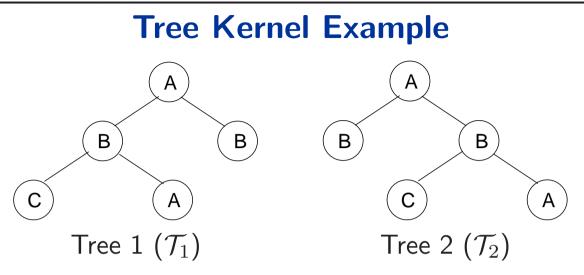
- $\bullet\,$ Tree kernels count the numbers of shared subtrees between trees \mathcal{T}_1 and \mathcal{T}_2
 - the feature-space, $oldsymbol{\phi}\left(\mathcal{T}_{1}
 ight)$, can be defined as

$$\phi_i(\mathcal{T}_1) = \sum_{n \in \mathcal{V}_1} I_i(n); \quad I_i(n) = \begin{cases} 1, & \text{sub-tree } i \text{ rooted at node } n \\ 0, & \text{otherwise} \end{cases}$$

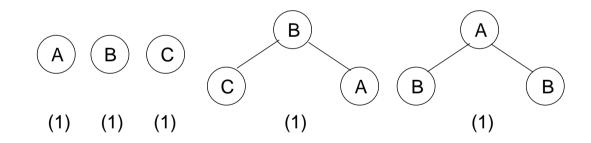
• Can be made computationally efficient by recursively using a counting function

$$k(\mathcal{T}_1, \mathcal{T}_2) = \boldsymbol{\phi}(\mathcal{T}_1)^{\mathsf{T}} \boldsymbol{\phi}(\mathcal{T}_2) = \sum_{n_1 \in \mathcal{V}_1} \sum_{n_2 \in \mathcal{V}_2} f(n_1, n_2);$$

- if productions from n_1 and n_2 differ $f(n_1, n_2) = 0$
- for leaves $f(n_1, n_2) = \begin{cases} 1 & n_1 = n_2 \\ 0 & \text{otherwise} \end{cases}$
- for non-leaf nodes $f(n_1, n_2) = \prod_{i=1}^{\# \operatorname{ch}(n_1)} (1 + f(\operatorname{ch}(n_1, i), \operatorname{ch}(n_2, i)))$



• The set of common sub-trees (and number) for these two graphs

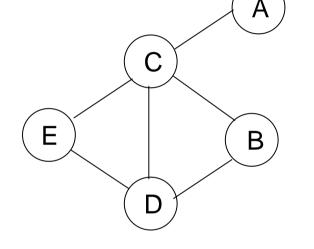


- for these trees:

 $k(\mathcal{T}_1, \mathcal{T}_2) = 5$

Graph Kernels

- An alternative form of kernel is based on graphs, $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$
 - 5 nodes/vertices, $\mathcal{V} = \{A, B, C, D, E\}$, 6 edges, \mathcal{E}
 - Various attributes:



- adjacency matrix, A: $a_{ij} = \begin{cases} 1, & (v_i, v_j) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$ - walk length k-1, $w = \{v_1, \dots, v_k\}$, $(v_{i-1}, v_i) \in \mathcal{E}$
- edges may also have weights associated with it
- Walks of length k can be computed using \boldsymbol{A}^k
- For the example graph above

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \boldsymbol{A}^{2} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 2 \\ 0 & 1 & 4 & 2 & 1 \\ 1 & 1 & 2 & 3 & 1 \\ 1 & 2 & 1 & 1 & 2 \end{bmatrix} \boldsymbol{A}^{3} = \begin{bmatrix} 0 & 1 & 4 & 2 & 1 \\ 1 & 2 & 6 & 5 & 2 \\ 4 & 6 & 4 & 6 & 6 \\ 2 & 5 & 6 & 4 & 5 \\ 1 & 2 & 6 & 5 & 2 \end{bmatrix}$$

Graph Kernels

How close are two graphs, \mathcal{G}_1 and \mathcal{G}_2 to each other?

- Set of kernels that operate on these graphs $k(\mathcal{G}_1,\mathcal{G}_2)$
 - based on common paths/walks in the two graphs
 - could consider longest/shortest paths
- Random walk kernel counts the number of matching walks in the two graphs
 - based in the product graph of \mathcal{G}_1 and \mathcal{G}_2 , \mathcal{G}_x \mathcal{G}_x graph of all identically labelled nodes and edges from \mathcal{G}_1 and \mathcal{G}_2

$$k(\mathcal{G}_1, \mathcal{G}_2) = \sum_{i,j=1}^{|\mathcal{V}_{\mathbf{x}}|} \left[\sum_{n=0}^{\infty} \lambda^n \mathbf{A}_{\mathbf{x}}^n / n! \right]_{ij} = \sum_{i,j=1}^{|\mathcal{V}_{\mathbf{x}}|} \left[\exp\left(\lambda \mathbf{A}_{\mathbf{x}}\right) \right]_{ij}$$

- A_{x} is the adjacency matrix for the product graph \mathcal{G}_{x}
- λ is a scalar to weight the contribution of longer walks

Perceptron Algorithm

- It is possible to use kernel functions on other classifiers
- Consider the perceptron algorithm (lecture 2). which can be written as

```
Initialise \mathbf{w} = \mathbf{0}, k = 0 and b = 0;
Until all points correctly classified do:
k=k+1;
if x_k is misclassified then
\mathbf{w} = \mathbf{w} + y_k x_k
b = b + y_k
```

- this yields the linear decision boundary defined by \mathbf{w}, b
- Classification based on

$$g(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + b, \quad \hat{\omega} = \begin{cases} \omega_1, & \text{if } g(\boldsymbol{x}) > 0\\ \omega_2, & \text{otherwise} \end{cases}$$

Kernelised Perceptron Algorithm

• The kernelised version of the algorithm may be described as

```
Initialise \alpha_i = 0, i = 1, ..., n, k = 0 and b = 0;
Until all points correctly classified do:
k=k+1;
if x_k is misclassified then
\alpha_k = \alpha_k + 1
b = b + y_k
```

– "Lagrange multiplier", $lpha_i$, the number of times sample $oldsymbol{x}_i$ is mis-recognised

• Classification is then performed based on (as for the SVM)

$$g(\boldsymbol{x}) = \sum_{i=1}^{n} y_i \alpha_i k(\boldsymbol{x}, \boldsymbol{x}_i) + b, \quad \hat{\omega} = \begin{cases} \omega_1, & \text{if } g(\boldsymbol{x}) > 0\\ \omega_2, & \text{otherwise} \end{cases}$$

