Clustering is **unsupervised** learning

Partitional clustering
- Provides less information but is more efficient (best: \(O(kn) \))
- **K-means**
 - Complexity \(O(kmni) \)
 - Guaranteed to converge, non-optimal, dependence on initial seeds
 - Minimize avg square within-cluster difference

Hierarchical clustering
- Best algorithms \(O(n^2) \) complexity
- Single-link vs. complete-link (vs. group-average)

Hierarchical and non-hierarchical clustering fulfills different needs (e.g. visualisation vs. navigation)

Text classification is **supervised** learning

Naive Bayes: simple baseline text classifier
Anchor text: What exactly are links on the web and why are they important for IR?
PageRank: the original algorithm that was used for link-based ranking on the web
Hubs & Authorities: an alternative link-based ranking algorithm
Assumption 1: **A hyperlink is a quality signal.**
- The hyperlink $d_1 \rightarrow d_2$ indicates that d_1’s author deems d_2 high-quality and relevant.

Assumption 2: **The anchor text describes the content of d_2.**
- We use anchor text somewhat loosely here for: the text surrounding the hyperlink.
- Example: “You can find cheap cars here.”
- Anchor text: “You can find cheap cars here”
Searching on \([\text{text of } d_2] + [\text{anchor text } \rightarrow d_2]\) is often more effective than searching on \([\text{text of } d_2]\) only.

Example: Query *IBM*

- Matches IBM’s copyright page
- Matches many spam pages
- Matches IBM wikipedia article
- May not match IBM home page!
- ...if IBM home page is mostly graphics

Searching on \([\text{anchor text } \rightarrow d_2]\) is better for the query *IBM*.

- In this representation, the page with the most occurrences of *IBM* is www.ibm.com.
www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

Thus: Anchor text is often a better description of a page’s content than the page itself.

Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)
A Google bomb is a search with “bad” results due to maliciously manipulated anchor text.

Google introduced a new weighting function in 2007 that fixed many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing, Yahoo
- Coordinated link creation by those who dislike the Church of Scientology

Defused Google bombs: [dumb motherf....], [who is a failure?], [evil empire]
A historic google bomb

Biography of President George W. Bush
Biography of the president from the official White House web site.
www.whitehouse.gov/president/gwbbio.html - 29k - Cached - Similar pages
Past Presidents - Kids Only - Current News - President
More results from www.whitehouse.gov »

Welcome to MichaelMoore.com!
Official site of the gadfly of corporations, creator of the film Roger and Me and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush
Web users manipulate a popular search engine so an unflattering description leads to the president’s page.
news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure
A search for miserable failure on Google brings up the official George W. Bush biography from the US White House web site. Dismissed by Google as not a ...
searchenginewatch.com/sereport/article.php/3296101 - 45k - Sep 1, 2005 - Cached - Similar pages
We can use the same formal representation (as DAG) for
- citations in the scientific literature
- hyperlinks on the web

Appropriately weighted citation frequency is an excellent
measure of **quality** . . .
 - . . . both for web pages and for scientific publications.

Next: PageRank algorithm for computing weighted citation
frequency on the web
Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably

In the steady state, each page has a long-term visit rate.
This long-term visit rate is the page’s PageRank.
PageRank = long-term visit rate = steady state probability
A Markov chain consists of \(N \) states, plus an \(N \times N \) transition probability matrix \(P \).

\textbf{state = page}

At each step, we are on exactly one of the pages.

For \(1 \leq i, j \leq N \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next page, given we are currently on page \(i \).

Clearly, for all \(i \), \(\sum_{j=1}^{N} P_{ij} = 1 \)
Example web graph

d0

gm

car

ford

benz

honda

jaguar

jag

d2

d3

jaguar

d4

speed
cat
lion

d5

leopard

tiger

cheetah

d6

jaguar

382
Link matrix for example

<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Transition probability matrix P for example

<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_1</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_2</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>d_5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>d_6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead ends.
The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not well-defined (or non-sensical).
At a **dead end**, jump to a random web page with prob. $1/N$.

At a **non-dead end**, with probability 10%, jump to a random web page (to each with a probability of $0.1/N$).

With remaining probability (90%), follow a random hyperlink on the page.

- For example, if the page has 4 outgoing links: randomly choose one with probability $(1-0.10)/4=0.225$

10% is a parameter, the **teleportation rate**.

Note: “jumping” from dead end is independent of teleportation rate.
With teleporting, we cannot get stuck in a dead end.
But even without dead ends, a graph may not have well-defined long-term visit rates.
More generally, we require that the Markov chain be \textit{ergodic}.
A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any other page.

Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:
Ergodic Markov chains

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the **steady-state probability distribution**.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.
- Teleporting makes the web graph ergodic.
 - \implies **Web-graph+teleporting** has a steady-state probability distribution.
 - \implies **Each page in the web-graph+teleporting** has a PageRank.
Where we are

- We now know what to do to make sure we have a well-defined PageRank for each page.
- Next: how to compute PageRank
A probability (row) vector $\vec{x} = (x_1, \ldots, x_N)$ tells us where the random walk is at any point.

Example: $(0 \ 0 \ 0 \ \ldots \ 1 \ \ldots \ 0 \ 0 \ 0 \ 0)$

1 2 3 \ldots i \ldots N-2 N-1 N

More generally: the random walk is on page i with probability x_i.

Example:

$(0.05 \ 0.01 \ 0.0 \ \ldots \ 0.2 \ \ldots \ 0.01 \ 0.05 \ 0.03)$

1 2 3 \ldots i \ldots N-2 N-1 N

$\sum x_i = 1$
If the probability vector is \(\vec{x} = (x_1, \ldots, x_N) \) at this step, what is it at the next step?

Recall that row \(i \) of the transition probability matrix \(P \) tells us where we go next from state \(i \).

So from \(\vec{x} \), our next state is distributed as \(\vec{x}P \).
The steady state in vector notation is simply a vector \(\vec{\pi} = (\pi_1, \pi_2, \ldots, \pi_N) \) of probabilities.

(We use \(\vec{\pi} \) to distinguish it from the notation for the probability vector \(\vec{x} \).)

\(\pi_i \) is the long-term visit rate (or PageRank) of page \(i \).

So we can think of PageRank as a very long vector – one entry per per page.
Steady-state distribution: Example

What is the PageRank / steady state in this example?
Steady-state distribution: Example

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_t(d_1)$</td>
<td>$P_t(d_2)$</td>
<td></td>
</tr>
<tr>
<td>$P_{11} = 0.25$</td>
<td>$P_{12} = 0.75$</td>
<td></td>
</tr>
<tr>
<td>$P_{21} = 0.25$</td>
<td>$P_{22} = 0.75$</td>
<td></td>
</tr>
</tbody>
</table>

$P_t(d_1) = P_{t-1}(d_1) \cdot P_{11} + P_{t-1}(d_2) \cdot P_{21}$

$0.25 \cdot 0.25 + 0.75 \cdot 0.25 = 0.25$

$P_t(d_2) = P_{t-1}(d_1) \cdot P_{12} + P_{t-1}(d_2) \cdot P_{22}$

$0.75 \cdot 0.25 + 0.75 \cdot 0.75 = 0.75$

PageRank vector $= \vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$
In other words: how do we compute PageRank?

Recall: \(\vec{\pi} = (\pi_1, \pi_2, \ldots, \pi_N) \) is the PageRank vector, the vector of steady-state probabilities ...

... and if the distribution in this step is \(\vec{x} \), then the distribution in the next step is \(\vec{x}P \).

But \(\vec{\pi} \) is the steady state!

So: \(\vec{\pi} = \vec{\pi}P \)

Solving this matrix equation gives us \(\vec{\pi} \).

\(\vec{\pi} \) is the principal left eigenvector for \(P \) ...

... that is, \(\vec{\pi} \) is the left eigenvector with the largest eigenvalue.

All transition probability matrices have largest eigenvalue 1.
One way of computing the PageRank $\vec{\pi}$

- Start with any distribution \vec{x}, e.g., uniform distribution
- After one step, we’re at $\vec{x}P$.
- After two steps, we’re at $\vec{x}P^2$.
- After k steps, we’re at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.
- Thus: we will eventually (in asymptotia) reach the steady state.
Computing PageRank: Power method

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_t(d_1)$</td>
<td>$P_t(d_2)$</td>
</tr>
</tbody>
</table>

| $P_{11} = 0.1$ | $P_{12} = 0.9$ |
| $P_{21} = 0.3$ | $P_{22} = 0.7$ |

t_0	0	1	0.3	0.7	$= \vec{x}P$
t_1	0.3	0.7	0.24	0.76	$= \vec{x}P^2$
t_2	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t_3	0.252	0.748	0.2496	0.7504	$= \vec{x}P^4$
t_∞	0.25	0.75	0.25	0.75	$= \vec{x}P^\infty$

PageRank vector $= \vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$

\[P_t(d_1) = P_{t-1}(d_1) \times P_{11} + P_{t-1}(d_2) \times P_{21} \]
\[P_t(d_2) = P_{t-1}(d_1) \times P_{12} + P_{t-1}(d_2) \times P_{22} \]
PageRank summary

- **Preprocessing**
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page i.

- **Query processing**
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user
PageRank issues

- Real surfers are not random surfers.
 - Examples of non-random surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.

- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service]
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable

- In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors
Example web graph
Transition (probability) matrix

<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_1</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_2</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>d_4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>d_5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>d_6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Transition matrix with teleporting

<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.88</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>d_1</td>
<td>0.02</td>
<td>0.45</td>
<td>0.45</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>d_2</td>
<td>0.31</td>
<td>0.02</td>
<td>0.31</td>
<td>0.31</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>d_3</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.45</td>
<td>0.45</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>d_4</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.88</td>
</tr>
<tr>
<td>d_5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>d_6</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.31</td>
<td>0.31</td>
<td>0.02</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>\vec{x}</td>
<td>$\vec{x}P^1$</td>
<td>$\vec{x}P^2$</td>
<td>$\vec{x}P^3$</td>
<td>$\vec{x}P^4$</td>
<td>$\vec{x}P^5$</td>
<td>$\vec{x}P^6$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>d_0</td>
<td>0.14</td>
<td>0.06</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>d_1</td>
<td>0.14</td>
<td>0.08</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>d_2</td>
<td>0.14</td>
<td>0.25</td>
<td>0.18</td>
<td>0.17</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>d_3</td>
<td>0.14</td>
<td>0.16</td>
<td>0.23</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>d_4</td>
<td>0.14</td>
<td>0.12</td>
<td>0.16</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>d_5</td>
<td>0.14</td>
<td>0.08</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>d_6</td>
<td>0.14</td>
<td>0.25</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Example web graph

PageRank

<table>
<thead>
<tr>
<th>Node</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0.05</td>
</tr>
<tr>
<td>d_1</td>
<td>0.04</td>
</tr>
<tr>
<td>d_2</td>
<td>0.11</td>
</tr>
<tr>
<td>d_3</td>
<td>0.25</td>
</tr>
<tr>
<td>d_4</td>
<td>0.21</td>
</tr>
<tr>
<td>d_5</td>
<td>0.04</td>
</tr>
<tr>
<td>d_6</td>
<td>0.31</td>
</tr>
</tbody>
</table>

PageRank(d_2) < PageRank(d_6): why?
How important is PageRank?

Frequent claim: PageRank is the most important component of web ranking. The reality:

- There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes . . .
- Rumour has it that PageRank in its original form (as presented here) now has a negligible impact on ranking
- However, variants of a page’s PageRank are still an essential part of ranking.
- Google’s official description of PageRank:

> “PageRank reflects our view of the importance of web pages by considering more than 500 million variables and 2 billion terms. Pages that we believe are important pages receive a higher PageRank and are more likely to appear at the top of the search results.”

- Adressing link spam is difficult and crucial.
Premise: there are two different types of relevance on the web.

Relevance type 1: **Hubs**. A hub page is a good list of [links to pages answering the information need].
 - E.g., for query [chicago bulls]: Bob’s list of recommended resources on the Chicago Bulls sports team

Relevance type 2: **Authorities**. An authority page is a direct answer to the information need.
 - The home page of the Chicago Bulls sports team
 - By definition: Links to authority pages occur repeatedly on hub pages.

Most approaches to search (including PageRank ranking) don’t make the distinction between these two very different types of relevance.
A good hub page for a topic **links to** many authority pages for that topic.

A good authority page for a topic **is linked to** by many hub pages for that topic.

Circular definition – we will turn this into an iterative computation.
Example for hubs and authorities

hubs
- www.bestfares.com
- www.airlinesquality.com
- blogs.usatoday.com/sky
- aviationblog.dallasnews.com

authorities
- www.aa.com
- www.delta.com
- www.united.com
Do a regular web search first
Call the search result the root set
Find all pages that are linked to or link to pages in the root set
Call this larger set the base set
Finally, compute hubs and authorities for the base set (which we’ll view as a small web graph)
The root set
Nodes that root set nodes link to
Nodes that link to root set nodes
The base set
Root set typically has 200–1000 nodes.

Base set may have up to 5000 nodes.

Computation of base set, as shown on previous slide:
- Follow outlinks by parsing the pages in the root set
- Find d’s inlinks by searching for all pages containing a link to d
Hub and authority scores

- Compute for each page d in the base set a **hub score** $h(d)$ and an **authority score** $a(d)$
- Initialization: for all d: $h(d) = 1$, $a(d) = 1$
- Iteratively update all $h(d), a(d)$
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authorities
 - So we output **two** ranked lists
Iterative update

- For all d: $h(d) = \sum_{d \rightarrow y} a(y)$

- For all d: $a(d) = \sum_{y \rightarrow d} h(y)$

- Iterate these two steps until convergence
Authorities for query [Chicago Bulls]

0.85 www.nba.com/bulls
0.25 www.essex1.com/people/jmiller/bulls.htm
 “da Bulls”
0.20 www.nando.net/SportServer/basketball/nba/chi.html
 “The Chicago Bulls”
0.15 users.aol.com/rynocub/bulls.htm
 “The Chicago Bulls Home Page”
0.13 www.geocities.com/Colosseum/6095
 “Chicago Bulls”

(Ben-Shaul et al, WWW8)
<table>
<thead>
<tr>
<th>Hubs</th>
<th>Hub Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.62</td>
<td>www.geocities.com/Colosseum/1778</td>
<td>“Unbelieveabulls!!!!!”</td>
</tr>
<tr>
<td>1.24</td>
<td>www.webring.org/cgi-bin/webring?ring=chbulls</td>
<td>“Erin’s Chicago Bulls Page”</td>
</tr>
<tr>
<td>0.74</td>
<td>www.geocities.com/Hollywood/Lot/3330/Bulls.html</td>
<td>“Chicago Bulls”</td>
</tr>
<tr>
<td>0.52</td>
<td>www.nobull.net/web_position/kw-search-15-M2.htm</td>
<td>“Excite Search Results: bulls”</td>
</tr>
<tr>
<td>0.52</td>
<td>www.halcyon.com/words ltd/bball/bulls.htm</td>
<td>“Chicago Bulls Links”</td>
</tr>
</tbody>
</table>

(Ben-Shaul et al, WWW8)
Official Website Links:

Chicago Bulls (official site)
http://www.nba.com/bulls/

Fan Club - Fan Site Links:

Chicago Bulls
Chicago Bulls Fan Site with Bulls Blog, News, Bulls Forum, Wallpapers and all your basic Chicago Bulls essentials!!
http://www.bullscentral.com

Chicago Bulls Blog
The place to be for news and views on the Chicago Bulls and NBA Basketball!
http://chi-bulls.blogspot.com

News and Information Links:

Chicago Sun-Times (local newspaper)
http://www.suntimes.com/sports/basketball/bulls/index.html

Chicago Tribune (local newspaper)
http://www.chicagotribune.com/sports/basketball/bulls/

Wikipedia - Chicago Bulls
All about the Chicago Bulls from Wikipedia, the free online encyclopedia.
http://en.wikipedia.org/wiki/Chicago_Bulls

Merchandise Links:

Chicago Bulls watches
http://www.sportimewatches.com/NBA_watches/Chicago-Bulls-watches.html
HITS can pull together good pages regardless of page content.

Once the base set is assembled, we only do link analysis, no text matching.

Pages in the base set often do not contain any of the query words.

In theory, an English query can retrieve Japanese-language pages!
 - If supported by the link structure between English and Japanese pages

Danger: **topic drift** – the pages found by following links may not be related to the original query.
Proof of convergence

- We define an $N \times N$ adjacency matrix A. (We called this the link matrix earlier.)
- For $1 \leq i, j \leq N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j ($A_{ij} = 1$) or not ($A_{ij} = 0$).
- Example:

 \[
 \begin{array}{ccc}
 d_1 & d_2 & d_3 \\
 |
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 d_1 & d_2 & d_3 \\
 d_1 & 0 & 1 & 0 \\
 d_2 & 1 & 1 & 1 \\
 d_3 & 1 & 0 & 0 \\
 \end{array}
 \]
Write update rules as matrix operations

- Define the hub vector \(\vec{h} = (h_1, \ldots, h_N) \) as the vector of hub scores. \(h_i \) is the hub score of page \(d_i \).
- Similarly for \(\vec{a} \), the vector of authority scores.
- Now we can write \(h(d) = \sum_{d \rightarrow y} a(y) \) as a matrix operation: \(\vec{h} = A\vec{a} \ldots \)
- \(\ldots \) and we can write \(a(d) = \sum_{y \rightarrow d} h(y) \) as \(\vec{a} = A^T \vec{h} \)
- HITS algorithm in matrix notation:
 - Compute \(\vec{h} = A\vec{a} \)
 - Compute \(\vec{a} = A^T \vec{h} \)
 - Iterate until convergence
HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T\vec{h}$

- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^T A\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of $A^T A$.
- So the HITS algorithm is actually a special case of the power method and hub and authority scores are eigenvector values.
- HITS and PageRank both formalise link analysis as eigenvector problems.
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Hub vectors $\vec{h}_0, \vec{h}_i = \frac{1}{d_i} A \cdot \vec{a}_i, i \geq 1$

<table>
<thead>
<tr>
<th></th>
<th>\vec{h}_0</th>
<th>\vec{h}_1</th>
<th>\vec{h}_2</th>
<th>\vec{h}_3</th>
<th>\vec{h}_4</th>
<th>\vec{h}_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>0.14</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>d_1</td>
<td>0.14</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>d_2</td>
<td>0.14</td>
<td>0.28</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>d_3</td>
<td>0.14</td>
<td>0.14</td>
<td>0.17</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>d_4</td>
<td>0.14</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>d_5</td>
<td>0.14</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>d_6</td>
<td>0.14</td>
<td>0.30</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Authority vectors \(\vec{a}_i = \frac{1}{c_i} A^T \cdot \vec{h}_{i-1}, \ i \geq 1 \)

<table>
<thead>
<tr>
<th>(d_0)</th>
<th>(\vec{a}_1)</th>
<th>(\vec{a}_2)</th>
<th>(\vec{a}_3)</th>
<th>(\vec{a}_4)</th>
<th>(\vec{a}_5)</th>
<th>(\vec{a}_6)</th>
<th>(\vec{a}_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_0)</td>
<td>0.06</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>(d_1)</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(d_2)</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>(d_3)</td>
<td>0.31</td>
<td>0.43</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>(d_4)</td>
<td>0.13</td>
<td>0.14</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>(d_5)</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(d_6)</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Example web graph

\[
\begin{array}{c|cc}
\text{d}_0 & a & h \\
\hline
\text{d}_0 & 0.10 & 0.03 \\
\text{d}_1 & 0.01 & 0.04 \\
\text{d}_2 & 0.12 & 0.33 \\
\text{d}_3 & 0.47 & 0.18 \\
\text{d}_4 & 0.16 & 0.04 \\
\text{d}_5 & 0.01 & 0.04 \\
\text{d}_6 & 0.13 & 0.35 \\
\end{array}
\]
Pages with highest in-degree: d_2, d_3, d_6

Pages with highest out-degree: d_2, d_6

Pages with highest PageRank: d_6

Pages with highest hub score: d_6 (close: d_2)

Pages with highest authority score: d_3
PageRank vs. HITS: Discussion

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalisation (ii) the set of pages to apply the formalisation to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- Claim: On the web, a good hub almost always is also a good authority.
- The actual difference between PageRank ranking and HITS ranking is therefore not as large as one might expect.
MRS chapter 21