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Precision and recall

THE TRUTH
WHAT THE Relevant Nonrelevant
SYSTEM Retrieved true positives (TP) | false positives (FP)
THINKS Not retrieved | false negatives (FN) | true negatives (TN)

e N

True False
Negatives ( Positives ) positives )
\ \ / /
N /’/ Retrie
Refevant ~~———— ved

True Negatives

P = TP/(TP+FP)
R = TP/(TP+FN)



Precision/Recall Graph
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Avg 11pt prec — area under normalised P/R graph
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Mean Average Precision (MAP)
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What we need for a benchmark

@ A collection of documents
o Documents must be representative of the documents we
expect to see in reality.
@ There must be many documents.
o 1398 abstracts (as in Cranfield experiment) no longer sufficient
to model modern retrieval

@ A collection of information needs

@ ... which we will often incorrectly refer to as queries
o Information needs must be representative of the information
needs we expect to see in reality.

@ Human relevance assessments

@ We need to hire/pay “judges” or assessors to do this.

o Expensive, time-consuming

o Judges must be representative of the users we expect to see in
reality.



Second-generation relevance benchmark: TREC

@ TREC = Text Retrieval Conference (TREC)

@ Organized by the U.S. National Institute of Standards and
Technology (NIST)

@ TREC is actually a set of several different relevance
benchmarks.

@ Best known: TREC Ad Hoc, used for first 8 TREC evaluations
between 1992 and 1999

@ 1.89 million documents, mainly newswire articles, 450
information needs

@ No exhaustive relevance judgments — too expensive

@ Rather, NIST assessors’ relevance judgments are available
only for the documents that were among the top k returned
for some system which was entered in the TREC evaluation
for which the information need was developed.
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Sample TREC Query

<num> Number: 508

<title> hair loss is a symptom of what diseases

<desc> Description:

Find diseases for which hair loss is a symptom.

<narr> Narrative:

A document is relevant if it positively connects the loss of head
hair in humans with a specific disease. In this context, “thinning
hair” and “hair loss” are synonymous. Loss of body and/or facial
hair is irrelevant, as is hair loss caused by drug therapy.



TREC Relevance Judgements

Humans decide which document—query pairs are relevant.



Interjudge agreement at TREC

information number of  disagreements
need ‘ docs judged

51 211 6

62 400 157

67 400 68

95 400 110

127 400 106

@ Observation: Judges disagree a lot.

@ This means a large impact on absolute performance numbers
of each system

@ But virtually no impact on ranking of systems

@ So, the results of information retrieval experiments of this kind
can reliably tell us whether system A is better than system B.

@ even if judges disagree.



Example of more recent benchmark: ClueWeb09

@ 1 billion web pages

@ 25 terabytes (compressed: 5 terabyte)
@ Collected January/February 2009

@ 10 languages

°

Unique URLs: 4,780,950,903 (325 GB uncompressed, 105 GB
compressed)

@ Total Outlinks: 7,944,351,835 (71 GB uncompressed, 24 GB
compressed)
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Evaluation at large search engines

@ Recall is difficult to measure on the web
@ Search engines often use precision at top k, e.g., k =10 ...

@ ...or use measures that reward you more for getting rank 1
right than for getting rank 10 right.
@ Search engines also use non-relevance-based measures.
o Example 1: clickthrough on first result
@ Not very reliable if you look at a single clickthrough (you may
realize after clicking that the summary was misleading and the
document is nonrelevant) . ..
o ...but pretty reliable in the aggregate.
o Example 2: A/B testing



A/B testing

Purpose: Test a single innovation
Prerequisite: You have a large search engine up and running.
Have most users use old system

Divert a small proportion of traffic (e.g., 1%) to the new
system that includes the innovation

Evaluate with an “automatic” measure like clickthrough on
first result

Now we can directly see if the innovation does improve user
happiness.

Probably the evaluation methodology that large search
engines trust most



o MRS, Chapter 8
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What is clustering?
Applications of clustering in information retrieval
K-means algorithm

Introduction to hierarchical clustering

Single-link and complete-link clustering
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© Clustering: Introduction



Clustering: Definition

@ (Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

o Documents within a cluster should be similar.
o Documents from different clusters should be dissimilar.

@ Clustering is the most common form of unsupervised learning.

@ Unsupervised = there are no labeled or annotated data.
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Classification

Clustering

supervised learning

unsupervised learning

classes are human-defined
and part of the input to the
learning algorithm

Clusters are inferred from
the data without human in-
put.

output = membership in
class only

Output = membership in
class + distance from cen-
troid (“degree of cluster
membership”)

Difference clustering—classification
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The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated
documents tend to be relevant to the same requests”.

il
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Applications of Clustering

@ IR: presentation of results (clustering of documents)
@ Summarisation:

@ clustering of similar documents for multi-document
summarisation
o clustering of similar sentences for re-generation of sentences

@ Topic Segmentation: clustering of similar paragraphs (adjacent
or non-adjacent) for detection of topic structure/importance

@ Lexical semantics: clustering of words by cooccurrence
patterns
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Scatter-Gather
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Clustering search results
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Clustering news articles
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Clustering topical areas
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Clustering what appears in AAG conferences
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Clustering terms
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Types of Clustering

@ Hard clustering v. soft clustering
o Hard clustering: every object is member in only one cluster
@ Soft clustering: objects can be members in more than one
cluster
@ Hierarchical v. non-hierarchical clustering
o Hierarchical clustering: pairs of most-similar clusters are
iteratively linked until all objects are in a clustering relationship
¢ Non-hierarchical clustering results in flat clusters of “similar”
documents
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Desiderata for clustering

@ General goal: put related docs in the same cluster, put
unrelated docs in different clusters.
o We'll see different ways of formalizing this.
@ The number of clusters should be appropriate for the data set
we are clustering.
o Initially, we will assume the number of clusters K is given.
@ There also exist semiautomatic methods for determining K
@ Secondary goals in clustering
@ Avoid very small and very large clusters
@ Define clusters that are easy to explain to the user
@ Many others . ..



© Non-hierarchical clustering



Non-hierarchical (partitioning) clustering

@ Partitional clustering algorithms produce a set of k non-nested
partitions corresponding to k clusters of n objects.

@ Advantage: not necessary to compare each object to each
other object, just comparisons of objects — cluster centroids
necessary

@ Optimal partitioning clustering algorithms are O(kn)

@ Main algorithm: K-means



K-means: Basic idea

@ Each cluster j (with n; elements x;) is represented by its
centroid ¢;, the average vector of the cluster:
1 &
G=—>) X
J ) i
gt
@ Measure of cluster quality: minimise mean square distance
between elements x; and nearest centroid ¢;

k
— =2
RSS=>"> d(X, )
j=1 x;€j
@ Distance: Euclidean; length-normalised vectors in VS
@ We iterate two steps:

@ reassignment: assign each vector to its closest centroid
e recomputation: recompute each centroid as the average of the
vectors that were recently assigned to it



K-means algorithm

Given: a set s) = x1,...x5 C R™
Given: a distance measure d : R™ X R™ - R
Given: a function for computing the mean p : P(R) — R™

Select k initial centers ?f, ?Z

while stopping criterion not true:

jl_<71 > es; d(x{, ¢ /)% < € (stopping criterion)
- =

do

for all clusters s; do (reass:gnment)
g ={XIVe 1 d(x, ) < d(x, )}

end

for all means ?j do (centroid recomputation)
=
G = uls))

end

end
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Worked Example: Set of points to be clustered

Exercise: (i) Guess what the optimal clustering into two clusters is
in this case; (ii) compute the centroids of the clusters
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Random seeds + Assign points to closest center

Iteration One



Worked Example: Recompute cluster centroids

Iteration One



Worked Example: Assign points to closest centroid

—

Iteration One
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Worked Example: Recompute cluster centroids

.x( ®ee

Iteration Two



Worked Example: Assign points to closest centroid

Iteration Two
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Worked Example: Recompute cluster centroids

Iteration Three



Worked Example: Assign points to closest centroid

Iteration Three



Worked Example: Recompute cluster centroids

Iteration Four



Worked Example: Assign points to closest centroid

Iteration Four
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Worked Example: Recompute cluster centroids

Iteration Five



Worked Example: Assign points to closest centroid

Iteration Five




Worked Example: Recompute cluster centroids

Iteration Six
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Worked Example: Assign points to closest centroid

Iteration Six
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Worked Example: Recompute cluster centroids

Iteration Seven
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Worked Ex.: Centroids and assignments after convergence

Convergence
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K-means is guaranteed to converge: Proof

RSS decreases during each reassignment step.
o because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

@ This follows from the definition of a centroid: the new centroid
is the vector for which RSSy reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Finite set & monotonically decreasing evaluation function —
convergence

Assumption: Ties are broken consistently.

304



Other properties of K-means

@ Fast convergence
@ K-means typically converges in around 10-20 iterations (if we
don’t care about a few documents switching back and forth)
o However, complete convergence can take many more iterations.

@ Non-optimality
¢ K-means is not guaranteed to find the optimal solution.
o If we start with a bad set of seeds, the resulting clustering can
be horrible.
@ Dependence on initial centroids
@ Solution 1: Use i clusterings, choose one with lowest RSS
@ Solution 2: Use prior hierarchical clustering step to find seeds
with good coverage of document space
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Time complexity of K-means

@ Reassignment step: O(KNM) (we need to compute KN
document-centroid distances, each of which costs O(M)

@ Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

@ Assume number of iterations bounded by /

@ Overall complexity: O(IKNM) — linear in all important
dimensions
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@ Hierarchical clustering



Hierarchical clustering

@ Imagine we now want to create a hierachy in the form of a
binary tree.
@ Assumes a similarity measure for determining the similarity of

two clusters.
@ Up to now, our similarity measures were for documents.

We will look at different cluster similarity measures.

Main algorithm: HAC (hierarchical agglomerative clustering)
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HAC: Basic algorithm

Start with each document in a separate cluster
Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a dendrogram.
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A dendrogram
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Term—document matrix to document—document matrix

Log frequency weighting

and cosine normalisation $aS P(Sa$,SaS) P(PaP,SaS)
5a5  PaP  WH PaP | P(SaS,PaP)  P(PaP,PaP)
0789 0832 0.524 WH | P(SaS,WH)  P(PaP,WH)
0515 0.555 0.465 525 2P

0335 0.000 0.405

0.000 0.000 0.588

SaS 1 .94 .79
PaP | .94 1 .69
WH | .79 .69 1

[5a5  PaP WH |

@ Applying the proximity metric to all pairs of documents. ..

@ creates the document-document matrix, which reports
similarities/distances between objects (documents)

@ The diagonal is trivial (identity)

@ As proximity measures are symmetric, the matrix is a triangle
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Hierarchical clustering: agglomerative (BottomUp, greedy)

Given: a set X = x1,...x, of objects;
Given: a function sim : P(X) x P(X) = R

for i:=1 to n do
Ci = X;
C:=cy, ... cn
ji=n+1
while C > 1 do
(C"1=C"2) = max(cu,cv)ECXCSim(Cuv CV)
Cj = Cnm U cn,
C=C {a,mtUg
ji=j+1

end

Similarity function sim : P(X) x P(X) — R measures similarity
between clusters, not objects
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Computational complexity of the basic algorithm

@ First, we compute the similarity of all N x N pairs of
documents.
@ Then, in each of N iterations:
o We scan the O(N x N) similarities to find the maximum
similarity.
o We merge the two clusters with maximum similarity.
o We compute the similarity of the new cluster with all other
(surviving) clusters.
@ There are O(N) iterations, each performing a O(N x N)
“scan” operation.

@ Overall complexity is O(N®).

@ Depending on the similarity function, a more efficient
algorithm is possible.
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Hierarchical clustering: similarity functions

Similarity between two clusters ¢, and ¢; (with similarity
measure s) can be interpreted in different ways:
@ Single Link Function: Similarity of two most similar members
Sim(cm Cv) = maXXeCLI7_y€CkS(X7.y)
@ Complete Link Function: Similarity of two least similar
members
Sim(cm Cv) = minXECu,yeCks(XLy)
@ Group Average Function: Avg. similarity of each pair of group
members

Sim(cm Cv) = anXECu,yECks(Xay)
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Example: hierarchical clustering; similarity functions

Cluster 8 objects a-h; Euclidean distances (2D) shown in diagram

a b c d
[ L] L] °
N l 15
2
e h
L] ‘ % °
b T
c 25 15
d 35 25 T
e 2 5 10.25 16.25
f 5 2 6.25 1025 | 1
g 10.25 6.25 2 5 2.5 15 |
h 16.25 10.25 5 2 35 2.5 [ 1 |
[T [ b [ < [ d [ e [ f [ |
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Single Link is O(n?)

b |[1
c |25 15

d ] 35 25 1

e || 2 V5 v/10.25 | 1/16.25

f |l V5 2 v6.25 | /1025 | 1

g || V1025 | v6.25 | 2 V5 25 15

h ][ V1625 | V10.25 | V5 2 3.5 25 1 |
IE [ b [ c [ d [ e K g |

After Step 4 (a—b, c—d, e—f, g—h merged):
c—d 1.5
e—f 2 v6.25
gh || V625 | 2 15 |
| [ab [cd |ef |
“min-min” at each step
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Clustering Result under Single Link
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Complete Link

b T
c 25 15
d 35 25 1
e 2 5 10.25 16.25
f 5 2 6.25 10.25 | 1
g 10.25 6.25 2 5 25 15 |
h 16.25 10.25 5 2 35 2.5 [1 |
[ MTa [ b [ ¢ [ d [ e [ f [ & |
After step 4 (a—b, c—d, e—f, g—h merged):
o 25 15
ef 2 V5 V/10.25 V16.25
2 V6.25 V/10.25
g-h 1/10.25 V6.25 2 V5 25 1.5
Vi625| V1025 | VB 2 25
| || a-b | c—d | e—f

“max-min” at each step
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Complete Link

b T
c 25 15
d 35 25 T
e 2 5 10.25 16.25
f 5 2 6.25 10.25 | 1
g 10.25 6.25 2 5 25 15 |
h 16.25 10.25 5 2 35 2.5 [1 |
[ MTa [ b [ ¢ [ d [ e [ f [ & |
After step 4 (a—b, c—d, e—f, g—h merged):
o 25 15
ef 2 V5 V/10.25 V16.25
V5 2 V6.25 V10.25
g-h 1/10.25 V6.25 2 NG 25 1.5
Vi625| V1025 | VB 2 25
| || a-b | c—d | e—f |

“max-min” at each step — ab/ef and cd/gh merges next
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Clustering result under complete link

Complete Link is O(n3)
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Example: gene expression data

@ An example from biology: cluster genes by function

@ Survey 112 rat genes which are suspected to participate in
development of CNS

@ Take 9 data points: 5 embryonic (E11, E13, E15, E18, E21), 3
postnatal (PO, P7, P14) and one adult

@ Measure expression of gene (how much mRNA in cell?)

@ These measures are normalised logs; for our purposes, we can
consider them as weights

@ Cluster analysis determines which genes operate at the same
time
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Rat CNS gene expression data (excerpt)

gene genbank locus Ell E13 E15 E18 E21 PO P7 P14 A
keratin RNKER19 1.703 0.349 0.523 0.408 0.683 0.461 0.32 0.081 0
cellubrevin $63830 5.759 4.41 1.195 2.134 2.306 2.539 3.892 3.953 2.72
nestin RATNESTIN 2.537 3.279 5.202 2.807 1.5 1.12 0.532 0.514 0.443
MAP2 RATMAP2 0.04 0.514 1.553 1.654 1.66 1.491 1.436 1.585 1.894
GAP43 RATGAP43 0.874 1.494 1.677 1.937 2.322 2.296 1.86 1.873 2.396
L1 S55536 0.062 0.162 0.51 0.929 0.966 0.867 0.493 0.401 0.384
NFL RATNFL 0.485 5.598 6.717 9.843 9.78 13.466 14.921 7.862 4.484
NFM RATNFM 0.571 3.373 5.155 4.092 4.542 7.03 6.682 13.591 27.692
NFH RATNFHPEP 0.166 0.141 0.545 1.141 1.553 1.667 1.929 4.058 3.859
synaptophysin RNSYN 0.205 0.636 1.571 1.476 1.948 2.005 2.381 2.191 1.757
neno RATENONS 0.27 0.704 1.419 1.469 1.861 1.556 1.639 1.586 1.512
S100 beta RATS100B 0.052 0.011 0.491 1.303 1.487 1.357 1.438 2.275 2.169
GFAP RNU03700 0 0 0 0.292 2.705 3.731 8.705 7.453 6.547
MOG RATMOG 0 0 0 0 0.012 0.385 1.462 2.08 1.816
GAD65 RATGADG65 0.353 1.117 2.539 3.808 3.212 2.792 2.671 2.327 2.351
pre-GAD67 RATGADG67 0.073 0.18 1.171 1.436 1.443 1.383 1.164 1.003 0.985
GAD67 RATGADG67 0.297 0.307 1.066 2.796 3.572 3.182 2.604 2.307 2.079
G67180/86 RATGADG67 0.767 1.38 2.35 1.88 1.332 1.002 0.668 0.567 0.304
G67186 RATGADG67 0.071 0.204 0.641 0.764 0.406 0.202 0.052 0.022 0
GAT1 RATGABAT 0.839 1.071 5.687 3.864 4.786 4.701 4.879 4.601 4.679
ChAT *) 0 0.022 0.369 0.322 0.663 0.597 0.795 1.015 1.424
ACHE S50879 0.174 0.425 1.63 2.724 3.279 3.519 4.21 3.885 3.95
oDC RATODC 1.843 2.003 1.803 1.618 1.569 1.565 1.394 1.314 1.11
TH RATTOHA 0.633 1.225 1.007 0.801 0.654 0.691 0.23 0.287 0
NOS RRBNOS 0.051 0.141 0.675 0.63 0.86 0.926 0.792 0.646 0.448
GRal (#) 0.454 0.626 0.802 0.972 1.021 1.182 1.297 1.469 1.511
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Rat CNS gene clustering — single link
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Rat CNS gene clustering — complete link
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Rat CNS gene clustering — group average link
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Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

For deterministic results, use HAC

HAC also can be applied if K cannot be predetermined (can
start without knowing K)
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@ Partitional clustering

@ Provides less information but is more efficient (best: O(kn))
¢ K-means

@ Hierarchical clustering
@ Best algorithms O(n?) complexity
@ Single-link vs. complete-link (vs. group-average)
@ Hierarchical and non-hierarchical clustering fulfills different
needs
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@ MRS Chapters 16.1-16.4
@ MRS Chapters 17.1-17.2
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