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© Why ranked retrieval?
9 Term frequency
O Zipf's Law and tf-idf weighting

© The vector space model
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@ Recap



Recap: Tolerant Retrieval

What to do when there is no exact match between query term
and document term?

Dictionary as hash, B-trie, trie
Wildcards via permuterm
and k-gram index

k-gram index and edit-distance for spelling correction
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Recap: Large-scale, distributed indexing

o BSBI and SPIMI
@ MapReduce
@ Reuters RVC1 and Heap's Law
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@ Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

@ Term frequency: This is a key ingredient for ranking.
@ Tf-idf ranking: best known traditional ranking scheme
@ And one explanation for why it works: Zipf's Law

@ Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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© Why ranked retrieval?



Ranked retrieval

@ Thus far, our queries have been Boolean.
@ Documents either match or don't.

@ Good for expert users with precise understanding of their
needs and of the collection.

@ Also good for applications: Applications can easily consume
1000s of results.

@ Not good for the majority of users

@ Don't want to write Boolean queries or wade through 1000s
of results.

@ This is particularly true of web search.
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Problem with Boolean search: Feast or famine

@ Boolean queries often have either too few or too many results.

standard AND user AND dlink AND 650
— 200,000 hits Feast!

standard AND user AND dlink AND 650
AND no AND card AND found

— 0 hits Famine!

@ In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

@ In ranked retrieval, “feast or famine” is less of a problem.

@ Condition: Results that are more relevant are ranked higher
than results that are less relevant. (i.e., the ranking algorithm
works.)
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Scoring as the basis of ranked retrieval

@ Rank documents in the collection according to how relevant
they are to a query

@ Assign a score to each query-document pair, say in [0, 1].
@ This score measures how well document and query “match”.

o If the query consists of just one term . ..

lioness |

@ Score should be 0 if the query term does not occur in the
document.

o The more frequent the query term in the document, the higher
the score

@ We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

@ A commonly used measure of overlap of two sets
@ Let A and B be two sets
@ Jaccard coefficient:

ANB
JACCARD(A, B) = ;AS B;

(A#£ 0 or B+#0)
@ JACCARD(A,A) =1
@ JACCARD(A,B)=0if ANB=0
@ A and B don't have to be the same size.

@ Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

@ What is the query-document match score that the Jaccard
coefficient computes for:

“ides of March” \
“Caesar died in March”

® JACCARD(q,d) =1/6
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What's wrong with Jaccard?

@ It doesn’t consider term frequency (how many occurrences a
term has).
@ Rare terms are more informative than frequent terms.
¢ Jaccard does not consider this information.
@ We need a more sophisticated way of normalizing for the
length of a document.
@ Later in this lecture, we'll use |[AN B|/+/|AU B| (cosine) ...
@ ...instead of |AN B|/|AU B| (Jaccard) for length
normalization.
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9 Term frequency



Binary incidence matrix

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector € {0,1}V].
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Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 157 73 0 0 0 1
BruTus 4 157 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3 8 5 8
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI.
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Bag of words model

We do not consider the order of words in a document.

Represented the same way:

John is quicker than Mary
Mary is quicker than John J

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at “recovering” positional information later in
this course.

For now: bag of words model
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Term frequency tf

@ The term frequency tf; 4 of term t in document d is defined
as the number of times that t occurs in d.

@ We want to use tf when computing query-document match
scores.

@ But how?
@ Raw term frequency is not what we want because:

@ A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

@ But not 10 times more relevant.

@ Relevance does not increase proportionally with term
frequency.

164



Instead of raw frequency: Log frequency weighting

@ The log frequency weight of term t in d is defined as follows

4= 0 otherwise J

@ Score for a document-query pair: sum over terms t in both g
and d:
tf-matching-score(q, d) = >, nq(1 + log tfr q)

@ The score is 0 if none of the query terms is present in the
document.
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O Zipf's Law and tf-idf weighting



Frequency in document vs. frequency in collection

@ In addition, to term frequency (the frequency of the term in
the document) . ..

@ ...we also want to use the frequency of the term in the
collection for weighting and ranking.

@ Now: excursion to an important statistical observation about
language.
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Zipf's law

@ How many frequent vs. infrequent terms should we expect in
a collection?

@ In natural language, there are a few very frequent terms and
very many very rare terms.

The ith most frequent term has
frequency cf; proportional to 1/i:
cf; %

@ cf; is collection frequency: the number of occurrences of the
term t; in the collection.
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Zipf's law

The ith most frequent term has
frequency cf; proportional to 1/i:
cf; %

@ So if the most frequent term (the) occurs cf; times, then the
second most frequent term (of) has half as many occurrences
Cf2 = %Cﬂ

@ ...and the third most frequent term (and) has a third as
many occurrences cf; = %Cfl etc.

@ Equivalent: cf; = c¢i* and log cf; = log c + klogi (for k = —1)

@ Example of a power law
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Zipf's Law: Examples from 5 Languages

Top 10 most frequent words in a large language sample:

English German Spanish [talian Dutch
the 61,847 der 7,377,879 que 32,894 non 25,757 de 4,770
of 29,391 die 7,036,092 de 32,116 di 22,868 en 2,709
and 26,817 und 4,813,169 no 29,897 che 22,738 het/'t 2,469
a 21,626 in 3,768,565 a 22,313 e 18,624 van 2,259
in 18,214 den 2,717,150 la 21,127 e 17,600 ik 1,999
to 16,284 von 2,250,642 el 18,112 la 16,404 te 1,935
it 10,875 zu 1,992,268 es 16,620 il 14,765 dat 1,875
is 9,982 das 1,983,589 y 15,743 un 14,460 die 1,807
to 9,343 mit 1,878,243 en 15,303 a 13,915 in 1,639

was 9,236 sich 1,680,106 lo 14,010 per 10,501 een 1,637
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Zipf's law: Rank x Frequency ~ Constant

English:  Rank R | Word | Frequency f | Rxf

10 | he 877 8770

20 | but 410 8200

30 | be 294 8820

800 | friends 10 8000

1000 | family 8 8000
German: Rank R | Word Frequency f Rxf
10 | sich 1,680,106 | 16,801,060
100 | immer 197,502 | 19,750,200
500 | Mio 36,116 | 18,059,500
1,000 | Medien 19,041 | 19,041,000
5,000 | Miete 3,755 | 19,041,000
10,000 | vorlaufige 1.664 | 16,640,000
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Other collections (allegedly) obeying power laws

Sizes of settlements

Frequency of access to web pages

Income distributions amongst top earning 3% individuals
Korean family names

Size of earth quakes

Word senses per word

Notes in musical performances
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Zipf's law for Reuters

Fit is not great. What
< is important is the
key insight: Few fre-
quent terms, many
rare terms.

log10 cf

log10 rank
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Desired weight for rare terms

@ Rare terms are more informative than frequent terms.

@ Consider a term in the query that is rare in the collection
(e.g., ARACHNOCENTRIC).

@ A document containing this term is very likely to be relevant.

@ — We want high weights for rare terms like
ARACHNOCENTRIC.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., GOOD, INCREASE, LINE).

A document containing this term is more likely to be relevant
than a document that doesn't ...

@ ...but words like GOOD, INCREASE and LINE are not sure
indicators of relevance.

— For frequent terms like GOOD, INCREASE, and LINE, we
want positive weights . ..

® ...but lower weights than for rare terms.
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Document frequency

@ We want high weights for rare terms like ARACHNOCENTRIC.

@ We want low (positive) weights for frequent words like GOOD,
INCREASE, and LINE.

@ We will use document frequency to factor this into computing
the matching score.

@ The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

o df; is the document frequency, the number of documents that
t occurs in.

@ df; is an inverse measure of the informativeness of term t.

@ We define the idf weight of term t as follows:

idf weight

N
Idft |Og10 df

(N is the number of documents in the collection.)
@ idf; is a measure of the informativeness of the term.

o log N af. instead of df to “dampen” the effect of idf

@ Note that we use the log transformation for both term
frequency and document frequency.

176



Examples for idf

Compute idf; using the formula: idf; = logyg %
t

term df; | idf;
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

@ idf affects the ranking of documents for queries with at least
two terms.

@ For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of ARACHNOCENTRIC and
decreases the relative weight of LINE.

o idf has little effect on ranking for one-term queries.
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Collection frequency vs. Document frequency

Collection Document

Term frequency  frequency
INSURANCE 10440 3997
TRY 10422 8760

@ Collection frequency of t: number of tokens of t in the
collection

@ Document frequency of t: number of documents t occurs in

@ Clearly, INSURANCE is a more discriminating search term and
should get a higher weight.

@ This example suggests that df (and idf) is better for weighting
than cf (and “icf").
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

tf-idf weight

N
Wt,d = (1 =k |Og tft,d) ° |Og d_f
t

o tf-weight

o idf-weight

@ Best known weighting scheme in information retrieval
@ Alternative names: tf.idf, tf x idf
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Summary: tf-idf

@ Assign a tf-idf weight for each term t in each document d:
@ The tf-idf weight ...

@ ...increases with the number of occurrences within a
document. (term frequency)
@ ...increases with the rarity of the term in the collection.

(inverse document frequency)
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© The vector space model



Binary incidence matrix

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector € {0,1}V].
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Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 157 73 0 0 0 1
BruTus 4 157 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3 8 5 8
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI.
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Binary — count — weight matrix

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 5.25 3.18 0.0 0.0 0.0 0.35
BruTUs 1.21 6.10 0.0 1.0 0.0 0.0
CAESAR 8.59 2.54 0.0 1.51 0.25 0.0
CALPURNIA 0.0 1.54 0.0 0.0 0.0 0.0
CLEOPATRA 2.85 0.0 0.0 0.0 0.0 0.0
MERCY 1.51 0.0 1.90 0.12 5.25 0.88
WORSER 1.37 0.0 0.11 4.15 0.25 1.95

Each document is now represented as a real-valued vector of tf-idf weights
cRIVI.
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Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights € RIVI.
So we have a |V|-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.
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Queries as vectors

@ Key idea 1: do the same for queries: represent them as vectors
in the high-dimensional space

@ Key idea 2: Rank documents according to their proximity to
the query

@ proximity &~ negative distance
@ This allows us to rank relevant documents higher than
nonrelevant documents
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How do we formalize vector space similarity?

First cut: (negative) distance between two points
( = distance between the end points of the two vectors)
Euclidean distance?

Euclidean distance is a bad idea . ..

... because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

POOR . d»: Rich poor gap grows
14 ¢i: Ranks of starving poets swell

g: [rich poor]

dsz: Record baseball salaries in 2010
RICH

0 1

The Euclidean distance of g and c72 is large although the
distribution of terms in the query g and the distribution of terms in
the document ds are very similar.
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d’. d’ is twice as long as d.

“Semantically” d and d’ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . ..

@ ...even though the Euclidean distance between the two
documents can be quite large.
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From angles to cosines

@ The following two notions are equivalent.

o Rank documents according to the angle between query and
document in decreasing order

o Rank documents according to cosine(query,document) in
increasing order

@ Cosine is a monotonically decreasing function of the angle for
the interval [0°,180°]
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Cosine

50 oQ 150 200 250 30Q 350
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Length normalization

@ How do we compute the cosine?

@ A vector can be (length-) normalized by dividing each of its
components by its length — here we use the L, norm:

lIxll2 = /22 %

@ This maps vectors onto the unit sphere ...

@ ...since after normalization: ||x||]2 = />, x? = 1.0

@ As a result, longer documents and shorter documents have
weights of the same order of magnitude.

@ Effect on the two documents d and d’ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Cosine similarity between query and document

-d _ z‘,v‘lql d;
ERSIN ST

cos(g,d) = sm(G, d) = Ci
q

@ q; is the tf-idf weight of term i in the query.
@ d; is the tf-idf weight of term / in the document.
o |G| and |d| are the lengths of G and d.

@ This is the cosine similarity of g and d..... or, equivalently,
the cosine of the angle between G and d.
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Cosine for normalized vectors

@ For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

0 cos(G,d)=G-d=>,qd;

o (if G and d are length-normalized).
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Cosine similarity illustrated

POOR
11 v(d1)
“~v(q)
(s
N\
N
\
0 \\
\
\
\
| v(ds
0 (d3)

RICH
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Cosine: Example

How similar are the

following novels? Term frequencies (raw counts)
SaS: S d

oo oemee Al term SaS  PaP WH
Sensibility

. AFFECTION 115 58 20

EaP_. Pride and JEALOUS 10 711

rejudice QOSSIP 2 0 6
WH: Wuthering Heights WUTHERING 0 0 38
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Cosine: Example

Term frequencies

Log frequency

Log frequency weighting

(raw counts) weighting and cosine normalisation
term SaS  PaP  WH SaS  PaP  WH SaS PaP WH
AFFECTION 115 58 20 3.06 276 230 0.789 0.832 0.524
JEALOUS 10 7 11 20 185 204 0.515 0.555 0.465
GOSSIP 2 0 6 1.30 0.00 1.78 0.335 0.000 0.405
WUTHERING 0 0 38 0.00 0.00 2.58 0.000 0.000 0.588

@ (To simplify this example, we don't do idf weighting.)

@ cos(SaS,PaP) ~

0.789 % 0.832 + 0.515 % 0.555 +- 0.335 * 0.0 +- 0.0 ¥ 0.0 ~ 0.94.

@ cos(SaS,WH) ~ 0.79
@ cos(PaP,WH) ~ 0.69
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Computing the cosine score

COSINESCORE(q)

O O 00N O Ul W=

float Scores[N] =0

Initialize Length|[N|

for each query termt

do calculate w; ; and fetch postings list for ¢
for each pair(d, tf; ;) in postings list
do Scores[d] +=wf; 3 X wi,

Read the array Length|d]

for eachd

do Scores[d] = Scores[d]/Length|d]

return Top K components of Scores|]
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Components of tf-idf weighting

Term frequency

Document frequency

Normalization

n (natural) tfe g n (no) 1 n (none) )

| (logarithm) 1+ log(tft.q) t (idf) log dif ¢ (cosine) L
VWEwi+ 4wk

a (augmented) 0.5+ % p (prob idf) max{0, log N;fdf’} u (pivoted 1/u

maxq (tf; 4) ¢ unique)
1 ifthy>0 _ R

b (boolean) {0 otherwise b (byte size) 1/CharLength®,

a<l
1+log(tfy.q)
L (log ave) TTosl@vera(ia)

Best known combination of weighting options

Default: no weighting
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tf-idf example

@ We often use different weightings for queries and documents.
@ Notation: ddd.qqq

Document:
mogarithmic tf
[n]o df weighting
[Cosine normalization
Query:
mogarithmic tf

— means idf

[0 Jo normalization




tf-idf example: Inc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
‘ tf-raw  tf-wght df idf  weight ‘ tf-raw  tf-wght weight n'lized ‘

auto 0 0 5000 23 0 1 1 1 052 |0

best 1 1 50000 1.3 1.3 0 0 0 0 0

car 1 1 10000 2.0 2.0 1 1 1 052 | 1.04

insurance | 1 1 1000 3.0 3.0 2 13 13 0.68 | 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n'lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
V12402 +12+ 132~ 1.92

1/1.92 ~ 0.52

1.3/1.92 ~ 0.68

Final similarity score between query and document: > ; wgi - wg; = 0+ 0 + 1.04 + 2.04 = 3.08
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query
Return the top K (e.g., K = 10) to the user



@ MRS, chapter 5.1.2 (Zipf's Law)
@ MRS, chapter 6 (Term Weighting)
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