
Lecture 2: Datastructures and Algorithms for

Indexing
Information Retrieval

Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

Simone.Teufel@cl.cam.ac.uk

Lent 2014

43

Simone.Teufel@cl.cam.ac.uk

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Today: the indexer

44

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: The indexer

45

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: the indexer

46

Overview

1 Index construction

2 Document and Term Normalisation
Documents
Terms

3 Other types of indexes
Biword indexes
Positional indexes

Index construction

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57

Calpurnia 54 1012 31

179

The major steps in inverted index construction:

Collect the documents to be indexed.

Tokenize the text.

Perform linguistic preprocessing of tokens.

Index the documents that each term occurs in.

47

Definitions

Word: a delimited string of characters as it appears in the text.

Term: a “normalised” word (case, morphology, spelling etc);
an equivalence class of words

Token: an instance of a word or term occurring in a document.

Type: an equivalence class of tokens (same as “term” in most
cases)

48

Example: index creation by sorting

Term docID Term (sorted) docID
I 1 ambitious 2

did 1 be 2
enact 1 brutus 1
julius 1 brutus 2

Doc 1: caesar 1 capitol 2
I did enact Julius I 1 caesar 1
Caesar: I was killed =⇒ was 1 caesar 2
i’ the Capitol;Brutus Tokenisation killed 1 caesar 2
killed me. i’ 1 did 1

the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 I 1
me 1 i’ 1
so 2 =⇒ it 2
let 2 Sorting julius 1
it 2 killed 1

Doc 2: be 2 killed 2
So let it be with with 2 let 2
Caesar. The noble caesar 2 me 1
Brutus hath told =⇒ the 2 noble 2
you Caesar was Tokenisation noble 2 so 2
ambitious. brutus 2 the 1

hath 2 the 2
told 2 told 2
you 2 you 2

caesar 2 was 1
was 2 was 1

ambitious 2 with 2

49

Index creation; grouping step (“uniq”)

Term & doc. freq. Postings list

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Primary sort by term
(dictionary)

Secondary sort (within
postings list) by document
ID

Document frequency (=
length of postings list):

for more efficient
Boolean searching (cf.
lecture 1)
for term weighting
(lecture 4)

keep dictionary in memory

keep postings list (much
larger) on disk

50

Optimisation: Skip Lists

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57 179

11

5

173

57

213

316

Some postings lists can contain several million entries

Enter skip lists

Check skip list if present, in order to skip multiple entries

Tradeoff: How many skips to place?

More skips: each pointer skips only a few items, but we can
frequently use it.
Fewer skips: each skip pointer skips many items, but we can
not use it very often.

Workable heuristic: place
√
L skips evenly for a list of length L.

With today’s fast CPUs, skip lists don’t help that much
anymore.

51

Overview

1 Index construction

2 Document and Term Normalisation
Documents
Terms

3 Other types of indexes
Biword indexes
Positional indexes

Document and Term Normalisation

To build an inverted index, we need to get from Input

Friends, Romans, countrymen. So let it be with Caesar. . .

to Output

friend roman countryman so

Each token is a candidate for a postings entry.

What are valid tokens to emit?

52

Parsing a document

Up to now, we assumed that

We know what a document is
We can easily “machine-read” each document

We need do deal with format and language of each document

Format could be excel, latex, HTML . . .
Document could be compressed or in binary format (excel,
word)
Character set could be Unicode, UTF-8, Big-5, XML (&)
Language could be French email with Spanish quote or
attachment

Each of these is a statistical classification problem

Alternatively we can use heuristics

53

Format/Language: Complications

A single index usually contains terms of several languages.

Documents or their components can contain multiple
languages

What is the document unit for indexing?

a file?
an email?
an email with 5 attachments?
an email thread?

Also might have to deal with XML/hierarchies of HTML
documents etc.

Answering the question “What is a document?” is not trivial.

Smaller units raise precision, drop recall

54

Normalisation

Need to normalise words in the indexed text as well as query
terms to the same form

Example: We want to match U.S.A. to USA

We most commonly implicitly define equivalence classes of
terms.

Alternatively, we could do asymmetric expansion:

window → window, windows
windows → Windows, windows, window
Windows → Windows

Either at query time, or at index time

More powerful, but less efficient

55

Tokenisation

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

neill aren’t

oneill arent

o’neill aren t

o’ neill are n’t

o neill
?

?

56

Tokenisation problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University

57

Numbers

20/3/91
3/20/91
Mar 20, 1991

B-52
6-year-old

100.2.86.144

(800) 234-2333
800.234.2333

.74189359872398457

Older IR systems may not index numbers...

... but generally it’s a useful feature.

58

Chinese: No Whitespace

Need to perform word segmentation

Use a lexicon or supervised machine-learning

Ambiguity

As one word, means “monk”
As two words, means “and” and “still”

59

Script-related Problems

Different scripts (alphabets) might be mixed in one language.

e.g., Japanese has 4 scripts: kanji, katakana, hiragana, romanji

no spaces

Scripts can incorporate different reading directions.

e.g., Arabic script and bidirectionality

Rendering vs. conceptual order

60

Other cases of “no whitespace”: Compounding

Compounding in Dutch, German, Swedish

German

Lebensversicherungsgesellschaftsangestellter
leben+s+versicherung+s+gesellschaft+s+angestellter

61

Other cases of “no whitespace”: Agglutination

“Agglutinative” languages do this not just for compounds:

Inuit

tusaatsiarunnangittualuujunga
(= “I can’t hear very well”)

Finnish

epäjärjestelmällistyttämättömyydellänsäkäänköhän
(= “I wonder if – even with his/her quality of not
having been made unsystematized”)

Turkish

Çekoslovakyalılaştıramadıklarımızdanmşçasına
(= “as if you were one of those whom we could not
make resemble the Czechoslovacian people”)

62

Casefolding, accents, diacritics

Casefolding can be semantically distinguishing:

Fed vs. fed
March vs. march
Turkey vs. turkey
US vs. us

Though in most cases it’s not.

Accents and Diacritics can be semantically distinguishing:

Spanish

peña = cliff, pena = sorrow

Though in most cases they are not (résumé vs. resume)

Most systems case-fold (reduce all letters to lower case) and
throw away accents.

Main decision criterion: will users apply it when querying?

63

Stop words

Extremely common words which are of little value in helping
select documents matching a user need

a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of,
on, that, the, to, was, were, will, with

Used to be standardly non-indexed in older IR systems.

Need them to search for the following queries:

to be or not to be
prince of Denmark
bamboo in water

Length of practically used stoplists has shrunk over the years.

Most web search engines do index stop words.

64

Lemmatisation

Reduce inflectional/variant forms to base form

am, are, is → be
car, car’s, cars’, cars → car
the boy’s cars are different colours → the boy car be different color

Lemmatisation implies doing “proper” reduction to dictionary
headword form (the lemma)

Inflectional morphology (cutting → cut)

Derivational morphology (destruction → destroy)

65

Stemming

Stemming is a crude heuristic process that chops off the ends
of words in the hope of achieving what “principled”
lemmatisation attempts to do with a lot of linguistic
knowledge.

automate, automation, automatic → automat

language dependent, but fast and space-efficient

does not require a stem dictionary, only a suffix dictionary

Often both inflectional and derivational

66

Porter Stemmer

M. Porter, “An algorithm for suffix stripping”, Program
14(3):130-137, 1980

Most common algorithm for stemming English

Results suggest it is at least as good as other stemmers

Syllable-like shapes + 5 phases of reductions

Of the rules in a compound command, select the top one and
exit that compound (this rule will have affecte the longest
suffix possible, due to the ordering of the rules).

67

Stemming: Representation of a word

[C] (VC){m}[V]
C : one or more adjacent consonants
V : one or more adjacent vowels

[] : optionality
() : group operator
{x} : repetition x times
m : the “measure” of a word

shoe [sh]C [oe]V m=0

Mississippi [M]C ([i]V [ss]C)([i]V [ss]C)([i]V [pp]C)[i]V m=3

ears ([ea]V [rs]C) m=1

Notation: measure m is calculated on the word excluding the suffix of
the rule under consideration

68

Porter stemmer: selected rules

SSES → SS
IES → I
SS → SS
S →

caresses → caress
cares → care

(m>0) EED → EE

feed → feed
agreed → agree

BUT: freed, succeed

(*v*) ED →

plastered → plaster
bled → bled

69

Three stemmers: a comparison

Such an analysis can reveal features that are not easily visible from the
variations in the individual genes and can lead to a picture of expression that is
more biologically transparent and accessible to interpretation.

Porter Stemmer

such an analysi can reveal featur that ar not easili visibl from the variat in the
individu gene and can lead to a pictur of express that is more biolog transpar
and access to interpret

Lovins Stemmer

such an analys can reve featur that ar not eas vis from th vari in th individu
gen and can lead to a pictur of expres that is mor biolog transpar and acces to
interpres

Paice Stemmer

such an analys can rev feat that are not easy vis from the vary in the individ
gen and can lead to a pict of express that is mor biolog transp and access to
interpret

70

Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries
and decreases it for others.

Example queries where stemming helps

tartan sweaters → sweater, sweaters
sightseeing tour san francisco → tour, tours

Example queries where stemming hurts

operational research → oper = operates, operatives, oper-
ate, operation, operational, op-
erative

operating system → oper
operative dentistry → oper

71

More equivalence classing

Thesauri: semantic equivalence, car = automobile

Soundex: phonetic equivalence, Muller = Mueller

72

Overview

1 Index construction

2 Document and Term Normalisation
Documents
Terms

3 Other types of indexes
Biword indexes
Positional indexes

Phrase Queries

We want to answer a query such as [cambridge university] –
as a phrase.

None of these should be a match:

But this one is OK:

73

Phrase Queries

About 10% of web queries are phrase queries.

Consequence for inverted indexes: no longer sufficient to store
docIDs in postings lists.

Two ways of extending the inverted index:

biword index
positional index

74

Biword indexes

Index every consecutive pair of terms in the text as a phrase.

Friends, Romans, Countrymen

Generates two biwords:
friends romans
romans countrymen

Each of these biwords is now a vocabulary term.

Two-word phrases can now easily be answered.

75

Longer phrase queries

A long phrase like cambridge university west campus can be
represented as the Boolean query

cambridge university AND university west AND west campus

We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.

76

Issues with biword indexes

Why are biword indexes rarely used?

False positives, as noted above

Index blowup due to very large term vocabulary

77

Positional indexes

Positional indexes are a more efficient alternative to biword
indexes.

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions (offsets)

78

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;
2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈1: 〈17, 25〉;
4: 〈17, 191, 291, 430, 434〉;

5: 〈14, 19, 101〉; . . . 〉

As always:

79

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;
2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈1: 〈17, 25〉;
4: 〈17, 191, 291, 430, 434〉;

5: 〈14, 19, 101〉; . . . 〉

As always: docid, term, doc freq; new: offsets

79

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
〈 1: 〈7, 18, 33, 72, 86, 231〉;
2: 〈1, 17, 74, 222, 255〉;
4: 〈8, 16, 190, 429, 433〉;
5: 〈363, 367〉;
7: 〈13, 23, 191〉; . . . 〉

be, 178239:
〈 1: 〈17, 25〉;
4: 〈17, 191, 291, 430, 434〉;

5: 〈14, 19, 101〉; . . . 〉

Document 4 is a match!

79

Complexity of search with positional index

Unfortunately, Θ(T) rather than Θ(N)

T . . . number of tokens in document collection
N . . . number of documents in document collection

Combination scheme:

Include frequent biwords as vocabulary terms in the index
(“Cambridge University”, “Britney Spears”)
Resolve all other phrases by positional intersection

80

Proximity search

We just saw how to use a positional index for phrase searches.

We can also use it for proximity search.

employment /4 place

Find all documents that contain employment and place within
4 words of each other.

HIT: Employment agencies that place healthcare workers are
seeing growth.

NO HIT: Employment agencies that have learned to adapt
now place healthcare workers.

81

Proximity search with positional index

Simplest algorithm: look at cross-product of positions of (i)
“employment” in document and (ii) “place” in document

Note that we want to return the actual matching positions,
not just a list of documents.

Very inefficient for frequent words, especially stop words

More efficient algorithm in book

82

Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a document,
what is a term?

Tokenization: how to get from raw text to terms (or tokens)

More complex indexes for phrase and proximity search

biword index
positional index

83

Reading

MRS Chapter 2.2

MRS Chapter 2.4

84

	Index construction
	Document and Term Normalisation
	Documents
	Terms

	Other types of indexes
	Biword indexes
	Positional indexes

