Lecture 2: Datastructures and Algorithms for Indexing
Information Retrieval
Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

UNIVERSITY OF CAMBRIDGE

Simone.Teufel@cl.cam.ac.uk

Lent 2014
IR System Components

- Query
- Document Collection
- IR System
- Set of relevant documents

Today: the indexer
IR System Components

Query

UI

IR System

Document Normalisation

Indexer

Ranking/Matching Module

Indexes

Document Collection

Set of relevant documents

Today: The indexer
IR System Components

Document Collection

Query Normalisation
Indexer

IR System

Query Norm.

Ranking/Matching Module

Indexes

Set of relevant documents

Today: the indexer
Overview

1 Index construction

2 Document and Term Normalisation
 - Documents
 - Terms

3 Other types of indexes
 - Biword indexes
 - Positional indexes
The major steps in inverted index construction:

- Collect the documents to be indexed.
- Tokenize the text.
- Perform linguistic preprocessing of tokens.
- Index the documents that each term occurs in.
Definitions

- **Word**: a delimited string of characters as it appears in the text.
- **Term**: a “normalised” word (case, morphology, spelling etc); an equivalence class of words
- **Token**: an instance of a word or term occurring in a document.
- **Type**: an equivalence class of tokens (same as “term” in most cases)
Example: index creation by sorting

<table>
<thead>
<tr>
<th>Term</th>
<th>docID</th>
</tr>
</thead>
<tbody>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>i'</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
</tr>
<tr>
<td>hath</td>
<td>2</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
</tbody>
</table>

Doc 1:
I did enact Julius
Caesar: I was killed
i’ the Capitol; Brutus killed me.

Doc 2:
So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious.

Term (sorted)

<table>
<thead>
<tr>
<th>Term</th>
<th>docID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>1</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
</tr>
<tr>
<td>capitol</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>1</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>i'</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
</tr>
<tr>
<td>let</td>
<td>2</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>noble</td>
<td>2</td>
</tr>
<tr>
<td>so</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>told</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>1</td>
</tr>
<tr>
<td>with</td>
<td>2</td>
</tr>
</tbody>
</table>
Index creation; grouping step ("uniq")

- **Primary sort by term (dictionary)**
- **Secondary sort (within postings list) by document ID**
- **Document frequency (length of postings list):**
 - for more efficient Boolean searching (cf. lecture 1)
 - for term weighting (lecture 4)
- keep **dictionary** in memory
- keep **postings list** (much larger) on disk

```
Term & doc. freq.

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc. freq.</th>
<th>Postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambitious</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>be</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>brutus</td>
<td>2</td>
<td>1 → 2</td>
</tr>
<tr>
<td>capitol</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>caesar</td>
<td>2</td>
<td>1 → 2</td>
</tr>
<tr>
<td>did</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>enact</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>hath</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>I’</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>julius</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>killed</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>let</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>noble</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>so</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>1 → 2</td>
</tr>
<tr>
<td>told</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>you</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>1 → 2</td>
</tr>
<tr>
<td>with</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

Primary sort by term (dictionary)
Secondary sort (within postings list) by document ID
Document frequency (= length of postings list):
 - for more efficient Boolean searching (cf. lecture 1)
 - for term weighting (lecture 4)
keep dictionary in memory
keep postings list (much larger) on disk
Optimisation: Skip Lists

- Some postings lists can contain several million entries
- Enter skip lists
- Check skip list if present, in order to skip multiple entries

Tradeoff: How many skips to place?
- More skips: each pointer skips only a few items, but we can frequently use it.
- Fewer skips: each skip pointer skips many items, but we can not use it very often.

Workable heuristic: place \sqrt{L} skips evenly for a list of length L.
- With today’s fast CPUs, skip lists don’t help that much anymore.
Overview

1. Index construction

2. Document and Term Normalisation
 - Documents
 - Terms

3. Other types of indexes
 - Biword indexes
 - Positional indexes
To build an inverted index, we need to get from Input

Friends, Romans, countrymen. So let it be with Caesar...

to Output

friend roman countryman so

- Each token is a candidate for a postings entry.
- What are valid tokens to emit?
Up to now, we assumed that
- We know what a document is
- We can easily “machine-read” each document

We need to deal with format and language of each document
- Format could be excel, latex, HTML ...
- Document could be compressed or in binary format (excel, word)
- Character set could be Unicode, UTF-8, Big-5, XML (\&)
- Language could be French email with Spanish quote or attachment

Each of these is a statistical classification problem

Alternatively, we can use heuristics
A single index usually contains terms of several languages.
Documents or their components can contain multiple languages
What is the document unit for indexing?
 - a file?
 - an email?
 - an email with 5 attachments?
 - an email thread?
Also might have to deal with XML/hierarchies of HTML documents etc.
Answering the question “What is a document?” is not trivial.
Smaller units raise precision, drop recall
Need to normalise words in the indexed text as well as query terms to the same form.

Example: We want to match U.S.A. to USA.

We most commonly implicitly define equivalence classes of terms.

Alternatively, we could do asymmetric expansion:

- window → window, windows
- windows → Windows, windows, window
- Windows → Windows

Either at query time, or at index time.

More powerful, but less efficient.
Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing.
Tokenisation problems: One word or two? (or several)

Hewlett-Packard
State-of-the-art
co-education
the hold-him-back-and-drag-him-away maneuver
data base
San Francisco
Los Angeles-based company
cheap San Francisco-Los Angeles fares
York University vs. New York University
Older IR systems may not index numbers...

... but generally it’s a useful feature.
莎拉波娃现在居住在美国东南部的佛罗里达。今年 4 月 9 日，莎拉波娃在美国第一大城市纽约度过了 18 岁生日。生日派对上，莎拉波娃露出了甜美的微笑。

- Need to perform word segmentation
- Use a lexicon or supervised machine-learning
- Ambiguity
 - As one word, means “monk”
 - As two words, means “and” and “still”
Different scripts (alphabets) might be mixed in one language.
- e.g., Japanese has 4 scripts: kanji, katakana, hiragana, romanji
- no spaces

Scripts can incorporate different reading directions.
- e.g., Arabic script and bidirectionality
- Rendering vs. conceptual order
Other cases of “no whitespace”: Compounding

Compounding in Dutch, German, Swedish

German

Lebensversicherungsgesellschaftsangestellter
leben+s+versicherung+s+gesellschaft+s+angestellter
“Agglutinative” languages do this not just for compounds:

Inuit

tusaatsiarunnangittualuujunga
(= “I can’t hear very well”)

Finnish

epäjärjestelmälistyttämättömyydellänsäkäänköhän
(= “I wonder if – even with his/her quality of not having been made unsystematized”)

Turkish

Çekoslovakyalılaştıramadıklarımızdanmışçasına
(= “as if you were one of those whom we could not make resemble the Czechoslovakian people”)

Casefolding, accents, diacritics

- Casefolding can be semantically distinguishing:
 - Fed vs. fed
 - March vs. march
 - Turkey vs. turkey
 - US vs. us

- Though in most cases it’s not.

- Accents and Diacritics can be semantically distinguishing:
 - Spanish
 - pena = cliff, pena = sorrow

- Though in most cases they are not (résumé vs. resume)

- Most systems case-fold (reduce all letters to lower case) and throw away accents.

- Main decision criterion: will users apply it when querying?
Stop words

- Extremely common words which are of little value in helping select documents matching a user need

 a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with

- Used to be standardly non-indexed in older IR systems.
- Need them to search for the following queries:

 to be or not to be
 prince of Denmark
 bamboo in water

- Length of practically used stoplists has shrunk over the years.
- Most web search engines do index stop words.
Lemmatisation

- Reduce inflectional/variant forms to base form
 - am, are, is → be
 - car, car’s, cars’, cars → car
 - the boy's cars are different colours → the boy car be different color

- Lemmatisation implies doing “proper” reduction to dictionary headword form (the lemma)

- Inflectional morphology (cutting → cut)
- Derivational morphology (destruction → destroy)
Stemming is a crude heuristic process that **chops off the ends of words** in the hope of achieving what “principled” lemmatisation attempts to do with a lot of linguistic knowledge.

- **automate, automation, automatic → automat**
- Language dependent, but fast and space-efficient
- Does not require a stem dictionary, only a suffix dictionary
- Often both inflectional and derivational

Most common algorithm for stemming English

Results suggest it is at least as good as other stemmers

Syllable-like shapes + 5 phases of reductions

Of the rules in a compound command, select the top one and exit that compound (this rule will have affected the longest suffix possible, due to the ordering of the rules).
Stemming: Representation of a word

[C] (VC){m}[V]

C : one or more adjacent consonants
V : one or more adjacent vowels
[] : optionality
() : group operator
{x} : repetition x times
m : the “measure” of a word

shoe \[sh \] C [oe] V \[m=0\]
ears \[[ea] V [rs] C\] \[m=1\]

Notation: measure m is calculated on the word **excluding** the suffix of the rule under consideration
Porter stemmer: selected rules

SSES → SS
IES → I
SS → SS
S →
careses → caress
cares → care

(m > 0) EED → EE
feed → feed
agreed → agree
BUT: freed, succeed

(*v*) ED →
plastered → plaster
bled → bled
Three stemmers: a comparison

Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation.

Porter Stemmer
such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation.

Lovins Stemmer
such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation.

Paice Stemmer
such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation.
In general, stemming increases effectiveness for some queries and decreases it for others.

Example queries where stemming helps

- *tartan sweaters* → sweater, sweaters
- *sightseeing tour san francisco* → tour, tours

Example queries where stemming hurts

- *operational research* → oper = operates, operatives, operate, operation, operational, operative
- *operating system* → oper
- *operative dentistry* → oper
More equivalence classing

- Thesauri: semantic equivalence, car = automobile
- Soundex: phonetic equivalence, Muller = Mueller
Overview

1 Index construction

2 Document and Term Normalisation
 - Documents
 - Terms

3 Other types of indexes
 - Biword indexes
 - Positional indexes
Phrase Queries

- We want to answer a query such as [cambridge university] – as a phrase.

- None of these should be a match:

 The Duke of Cambridge arriving at St John’s College, Cambridge alongside Leszek Borysiewicz Vice Chancellor University of Cambridge, Polly Coutice Director of Cambridge Programme Sustainability and Professor Christopher Dobson. Photo: PA.

 The Duke of Cambridge was welcomed by University of Cambridge officials as he began a 10-week course on Tuesday.

- But this one is OK:

 Prince William begins agricultural course at Cambridge University
About 10% of web queries are phrase queries.

Consequence for inverted indexes: no longer sufficient to store docIDs in postings lists.

Two ways of extending the inverted index:
- biword index
- positional index
Index every consecutive pair of terms in the text as a phrase.

Each of these biwords is now a vocabulary term.

Two-word phrases can now easily be answered.
A long phrase like *cambridge university west campus* can be represented as the Boolean query

```
cambridge university AND university west AND west campus
```

We need to do post-filtering of hits to identify subset that actually contains the 4-word phrase.
Issues with biword indexes

Why are biword indexes rarely used?
- False positives, as noted above
- Index blowup due to very large term vocabulary
Positional indexes are a more efficient alternative to biword indexes.

- Postings lists in a nonpositional index: each posting is just a docID
- Postings lists in a positional index: each posting is a docID and a list of positions (offsets)
Query: “to$_1$ be$_2$ or$_3$ not$_4$ to$_5$ be$_6$”

TO, 993427:

\[
\begin{align*}
1: & \langle 7, 18, 33, 72, 86, 231 \rangle; \\
2: & \langle 1, 17, 74, 222, 255 \rangle; \\
4: & \langle 8, 16, 190, 429, 433 \rangle; \\
5: & \langle 363, 367 \rangle; \\
7: & \langle 13, 23, 191 \rangle; \ldots \\
\end{align*}
\]

BE, 178239:

\[
\begin{align*}
1: & \langle 17, 25 \rangle; \\
4: & \langle 17, 191, 291, 430, 434 \rangle; \\
5: & \langle 14, 19, 101 \rangle; \ldots \\
\end{align*}
\]
Positional indexes: Example

Query: “to₁ be₂ or₃ not₄ to₅ be₆”

TO, 993427:

⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;
 2: ⟨1, 17, 74, 222, 255⟩;
 4: ⟨8, 16, 190, 429, 433⟩;
 5: ⟨363, 367⟩;
 7: ⟨13, 23, 191⟩; . . . ⟩

BE, 178239:

⟨ 1: ⟨17, 25⟩;
 4: ⟨17, 191, 291, 430, 434⟩;
 5: ⟨14, 19, 101⟩; . . . ⟩

As always: docid, term, doc freq; new: offsets
Positional indexes: Example

Query: “to\textsubscript{1} be\textsubscript{2} or\textsubscript{3} not\textsubscript{4} to\textsubscript{5} be\textsubscript{6}”

TO, 993427:
\begin{itemize}
 \item 1: \{7, 18, 33, 72, 86, 231\};
 \item 2: \{1, 17, 74, 222, 255\};
 \item 4: \{8, 16, 190, 429, 433\};
 \item 5: \{363, 367\};
 \item 7: \{13, 23, 191\}; \ldots
\end{itemize}

BE, 178239:
\begin{itemize}
 \item 1: \{17, 25\};
 \item 4: \{17, 191, 291, 430, 434\};
 \item 5: \{14, 19, 101\}; \ldots
\end{itemize}

Document 4 is a match!
Unfortunately, $\Theta(T)$ rather than $\Theta(N)$
- $T \ldots$ number of tokens in document collection
- $N \ldots$ number of documents in document collection

Combination scheme:
- Include frequent biwords as vocabulary terms in the index ("Cambridge University", "Britney Spears")
- Resolve all other phrases by positional intersection
We just saw how to use a positional index for phrase searches. We can also use it for proximity search.

employment /4 place

- Find all documents that contain *employment* and *place* within 4 words of each other.
- HIT: *Employment* agencies that *place* healthcare workers are seeing growth.
- NO HIT: *Employment* agencies that have learned to adapt now *place* healthcare workers.
Simplest algorithm: look at cross-product of positions of (i) “employment” in document and (ii) “place” in document.
Note that we want to return the actual matching positions, not just a list of documents.
Very inefficient for frequent words, especially stop words.
More efficient algorithm in book.
Take-away

- Understanding of the basic unit of classical information retrieval systems: **words** and **documents**: What is a document, what is a term?
- **Tokenization**: how to get from raw text to terms (or tokens)
- More complex indexes for phrase and proximity search
 - biword index
 - positional index
- MRS Chapter 2.2
- MRS Chapter 2.4