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Digital Hardware Labs - Introduction 

Many materials are available on which to build prototype circuits. The material chosen will 
depend on the required life and use of the circuit. For laboratory use or other short-term 
applications where a permanent circuit is not needed and the operating frequency is below 
10 MHz, solderless breadboards such as that used in the prototyping box shown below are 
suitable. 

The prototyping box comprises: 

 3 breadboards on which your circuits will be constructed 
 A 5 volt power supply required for the logic integrated circuits (chips) 
 A variable frequency clock which operates in either manual or free running mode 
 8 switches, which can provide inputs to your circuit 
 2 push button switches (not debounced) 
 A debounced push button switch 
 Two 7-segment light emitting diode (LED) display 
 A 10x7 LED array 
 8 user input LEDs 
 A potentiometer 

 

There are three banks of LEDs on the left hand side of the board for signal output: 

 At the top there is a pair of 7-segment LED displays which are connected via PALs. 
The PALs have been configured to do binary to 7-segment hexadecimal character 
conversion. Inputs A to D provide the binary inputs. 

 In the middle there is an LED bar graph. 8 of the LEDs are connected via a buffer. 
The other two indicate when the power is on and the state of the clock. 
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 At the bottom you will find an LED matrix. The column decoding is provided by a 4-
to-16 line decoder (inputs A to D) and the row value is supplied via a buffer (inputs 0 
to 6). 

Using the Breadboard 

A breadboard has many strips of metal which run underneath the board. The metal strips 
are laid out as shown in red below, horizontally along the two lines at the top and bottom, 
and vertically to join six holes together in the central section. 

 

These strips connect the holes on the top of the board. This makes it easy to connect 
components together to build circuits. To use the breadboard, the legs of components are 
placed in the holes (the sockets). The holes are made so that they will hold the component 
in place. Each hole is connected to one of the metal strips running underneath the board. 

The long top and bottom row of holes are usually used for power supply connections. The 
rest of the circuit is built by placing components and connecting them together with jumper 
wires. Chips can be placed in the middle of the board so that half the legs are on one side 
of the middle line and half are on the other side. A completed circuit might look like the 
following. 

 

Careful planning of the circuit layout simplifies wiring, minimizes errors and makes 
debugging easier. Try to arrange the circuit for a logical signal flow, usually inputs on the 
left and outputs on the right. This helps anyone looking at the board to find easily sections 
of the circuit and trace signals through it. Wherever possible, all ICs should be pointed in 
the same direction to reduce the chance of one being put in backwards. This also makes it 
easier to keep track of pin numbers when wiring and debugging. Colour coded wiring is an 
easy way to reduce wiring errors and aid the process. If possible, build and test one 
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section of the circuit at a time to simplify debugging before connecting the sections 
together. Keep connecting wires as short as possible and route them around ICs so that a 
defective IC can be replaced without removing and often incorrectly replacing the wires. 
While all this may seem laborious, the time spent in careful construction and checking is 
well repaid by having more circuits work first time. 

The pin outs of all the ICs used in the hardware labs are available as a booklet in the lab. 
Never take the pin out of an IC for granted! Below are two similar chips: the 7400 and 
7402, are quad NAND and quad NOR gates respectively. Note the different pin out. 

 
 

More details concerning the chips you will be using are available in the lab booklet and also 
on the course web page. 

Common Ticking Criteria 

All of the workshops should be written up in full in the style of a laboratory log book. You 
may use an actual log book or else loose sheets with page numbers. From your notes it 
should be possible for somebody else to be able to reproduce your work. This is good 
scientific practise. When an exercise is complete and written up, including answers to the 
questions, the final page will be signed by a demonstrator and a tick entered in the tick 
sheet.  

We recommend that you draw out circuits in your log book before wiring them up. Put pin 
numbers for the connections to each chip. 

VERY IMPORTANT: you need to hand in this assessed exercise as part of your 
portfolio of work at the end of the year (see the Head of Department’s Notice), SO 
YOU MUST KEEP YOUR WORK! 

Appendix 1 – Resistor Colour Code 

Resistors are normally coded with coloured bands to enable quick identification of their 
value. The colour code specifies the value of the resistor, in ohms, and the maximum 
deviation from the stated value (the tolerance). Most resistors have a manufacturer's 
tolerance with is adequate for most electronic applications. 

Interpreting the Colour Code 

The four colour code bands are at one end of the component. Counting from the end, the 
first three (or sometimes four) bands give the resistance value and the last the tolerance. 
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The significance of the colours is shown in the table below: 

First 3 (or 4) bands Tolerance band 

Black 0 Brown 1% 

Brown 1 Red 2% 

Red 2 Gold 5% 

Orange 3 Silver 10% 

Yellow 4 No band 20% 

Green 5 
  

Blue 6 
  

Violet 7 
  

Grey 8 
  

White 9 
  

Reading the value (three band) 

The first two bands are used to specify the first two digits of the resistor's value. The third 
gives the number of noughts to be added. Thus in this example, yellow and violet give the 
first two digits as 4 and 7 and the number of zeros is 3 (orange) giving a value of 47000 
ohms. 

 

Four Band Resistors 

More modern resistors use four bands to specify the resistance, the first three giving the 
three most significant digits and the fourth the number of zeros. Yellow, violet, black, red 
decodes as 4, 7, 0, 00 i.e., 47000 ohms. 

 

 

© 2011 DJ Greaves, DL Gordon, SW Moore and IJ Wassell 
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Workshop One – Electronic Die 
 
Introduction 
 
The purpose of this lab is to build a simple electronic die using light emitting diodes (LEDs) 
as the display device. Digital logic chips will be used to implement the required functionality. 
You will construct the die on a prototyping breadboard that is housed in the 1A workshop 
prototyping box. Before you start wiring up the circuits, make sure you understand how the 
holes in the breadboard are connected and also how the pins are numbered on the logic 
chips – see the description in Appendix A. 
 

Equipment and Components 
 
1A Workshop Prototyping Box 
Connecting wire 
Red LEDs (7) 

220 resistors (7) 

10k resistor 
74HC00 – Quad 2 input NAND gates (2) 
74HC193 – Synchronous 4 bit up/down counter (1) 
 

Step 1 – Wiring up one LED 
 
First we need to see how to turn on one LED; note there will be seven in the completed die. 
If a LED is connected directly across the 5V power supply used to power the digital logic 
chips, it may well draw enough current to destroy itself. To prevent this happening we need 
to connect a current limiting resistor in series with the LED. The required circuit is below, 
followed by the calculation to select an appropriate value for the current limiting resistor, R. 
 
Please make sure you use the correct value resistor, otherwise you may destroy the LED. 
 
 
 
 
 
 
 
 
 
 
When the LED is lit correctly, the voltage across it will be about 1.6V and the current flowing 
through it should be about 15mA. To work out the appropriate value for R we need to use 
Ohm’s law, i.e., V = IR. In this case the voltage across R is (5 - 1.6)V, so, 
 

   R = V/I = (5 - 1.6)/0.015 = 226. 
    

Note that the nearest available value (known as the preferred value) is 220. 
 
Task: Construct the above circuit and check that the LED lights when the button is pressed. 

Blue Push-

Button Switch 

R 

0V 

5V 

LED 

LED pin out 
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Step 2 – Binary to Die Decoder 
 
To construct the die you will need to arrange the 7 LEDs in the following pattern to emulate 
the spots on a die. 
 
 
 
    Example for die showing ‘3’ 
 
 
 
Task: Arrange the 7 LEDs on your breadboard to make the above pattern; making sure that 

each LED has a 220resistor in series with it. Then construct the following circuit using a 
74HC00 quad 2-input NAND chip, i.e., each chip contains 4 NAND gates. Test the circuit by 
connecting the 3 inputs to the toggle switches in the prototyping box. Remember to connect 
Vcc (pin 14) to 5V and GND (pin 7) to 0V. Also unused gate inputs must be connected to 0V 
to prevent unstable operation of the chips. 
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Step 3 – Make the die spin 
 

Task: Use a 74HC193 counter chip as a replacement for the toggle switches. Wire up the 
circuit as shown below. Set the clock generator in the prototyping box to 100kHz. Note that 
to make the counter pausable, the 100 kHz clock is connected through one of the blue push 
button switches. Remember to disconnect S0, S1, S2 from the toggle switches and to 
connect them to the appropriate outputs from the counter, namely Q0, Q1, Q2. Also 
remember to connect Vcc (pin 16) to 5V and GND (pin 8) to 0V. You should now have a 
usable 8-sided die! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optional Bonus Step 
 
Task: Modify the previous circuit as shown below so that the die counts from 1 through 6. 
The decode logic detects the count of ‘7’ and forces the counter to parallel load with the 
count of ‘1’.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The decode logic has the following circuit diagram. Note that it uses the previously unused 
NAND gates from the original die design – remember to disconnect their inputs from 0V! 
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Assessment 
 
Ticking criteria: Demonstrate that your 8-sided die works and answer the following 
questions. 
 
Once your work has met the Common Ticking Criteria (see Introduction), get your work 
ticked by an assessor. Remember that you need to hand-in this assessment exercise as part 
of your portfolio of work (see Head of Department’s notice). 
 
In future workshops, it will be often be convenient to monitor the logical value of a signal 
using LEDs. Rather than wiring up discrete LEDs with serial resistors as we have done in 
this workshop, it will be more convenient to use the bank of 8 pre-wired LEDs which is 
available on the left hand side of the prototyping box. 
 
Questions 
 
1. What die patterns are displayed for binary inputs 000 and 111? 
2. How much current can each NAND gate on the 74HC00 drive? 
3. How would you arrange an LED (and resistor) so that it turns on when the output of a 
NAND gate is low? 
4. How could this reduce the number of gates you have used? 
 
 
 
 
 
 
I. J. Wassell         27-10-11 
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Workshop Two – Shaft Position Encoder 

Introduction 

Some industrial automation applications require control systems which know the rotational 
position of a shaft. Similar devices are also used for digital volume controls, etc., on 
domestic appliances. A shaft encoder is used to record the rotation typically in the form of a 
digital Gray code. In this workshop you need to build a decoder for such an encoder. 

The shaft encoder you will be using produces a 2-bit Gray code. Such encoders are usually 
optical (e.g., those commonly used in a mouse), but in this case, we will be using a 
mechanical encoder. A disk is connected to the shaft which rotates with it. Electrical 
contacts are made with this disk to produce one of two Gray code sequences shown below 
depending upon the direction of rotation. 

 

A shaft decoder module is required to convert this 2-bit Gray code (B,A) into a 4-bit position 
count. The 4-bit position count should be incremented every time the input from the encoder 
changes owing to a clockwise rotation (e.g., from 00 to 01, or from 10 to 00). Similarly, the 4-
bit position count should be decremented every time the input from the encoder changes 
owing to an anticlockwise rotation (e.g., from 00 to 10, or from 01 to 00). Firstly, a Finite 
State Machine (FSM) must be designed to generate the clockwise and anticlockwise rotation 
detection signals. These signals are then used to control a separate 4-bit binary up/down 
counter that generates the current position (i.e., the counter output value) that is then 
displayed on one of the 7-segment LED displays (with built-in hexadecimal to 7-segment 
display decoder) housed in the prototype box. 

Components 

 1a prototyping box 

 rotary shaft encoder and two 4.7k pull-down resistors 
 a PAL - GAL16V8 
 74HC193 - 4-bit up/down counter 

Note: The recommended circuit for the shaft encoder is given in the lab booklet - remember 

to use the 4.7k pull-down resistors to turn the switch open state into a firm logic value. Also 
note that the encoder provided steps through all four of the output combinations for each 
‘click’ position. 

Contact B 

Contact A 

Contact B 

Contact A 
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Step 1 - shaft decoder to generate clockwise/anticlockwise signals 

Design task 1: Draw a state diagram to decode this movement. Generate two independent 
outputs, one that goes high for one clock cycle when the shaft rotates one output 
combination change clockwise, namely CW, and the other for one output combination 
change anticlockwise, namely AW. Assume 4 states, i.e., 00, 01, 11 and 10, and make the 
next state equal to the current input values B and A. For example, assume we are in 
state 00 and the shaft rotates one output combination anticlockwise giving current input 
values, B=1, A=0, the next state will be 10 and the outputs are AW=1 and CW=0. Now 
complete the state diagram for all 4 states and for all possible inputs per state (3 per state). 

Design task 2: From the state diagram, create a state transition table. Note that this table 
will have columns for the Current State, the Next State (remember that is the same as the 
current inputs) and for the clockwise (CW) and anticlockwise (AW) outputs. Now determine 
expressions for the AW and CW outputs. Remember that it is possible to use don’t care 
conditions to simplify the expressions for AW and CW. For example, one don’t care 
condition for both AW and CW is for the 00 to 11 state transition that we know does not ever 
occur. We now wish to implement a synchronous (clocked from an independent free-running 
clock) FSM inside a PAL. 

The PAL has 8 possible output pins labelled P19 to P12 and 8 inputs labelled P2 to P9. 
Connect P2 to Contact A and P3 to Contact B.  

This exercise can be completed by designing a four-state FSM, where the D-type flip-flops 
(FFs) having outputs labelled P16 and P17 hold the states. Your equations should look 
something like this: 

P19 = p2 

P18 = p3 
P17 = p19 

P16 = p18 

P15 = <Some function of p16, p17, p18 and p19> 
P14 = <Some function of p16, p17, p18 and p19> 

 

This means that FF output P19 is a registered version of its input P2 (that is connected to A) 
and FF output P18 is a registered version of its input P3 (that is connected to B). The state 
of the FSM is held in the FFs having outputs P16 and P17 and these are registered versions 
of the FF outputs P18 and P19 respectively. Effectively, the Next State (that we have made 
equivalent to the current inputs) is FF outputs P18 and P19, and the Current State are FF 
outputs P16 and P17. The outputs labelled P15 and P14 are the Clockwise (CW) and 
Anticlockwise (AW) signals respectively and are therefore some function of the state (P16 
and P17) and the registered inputs (P18 and P19). 

Very Important Point Concerning the 74HC193 4-bit up/down Counter 

Fundamentally, the CW and AW signals are used to control whether the counter increments 
or decrements its current count value respectively, i.e., whether it up or down counts. The 
up/down counter has 2 separate clock inputs, one for up counting (CPU) and one for down 
counting (CPD). For example to make the counter increment, then a rising edge has to be 
applied to CPU input (essentially a pulse signal created by changing the CPU input signal 
from a binary ‘1’ to a binary ‘0’ and then back again), while the CPD input is held at binary 
‘1’. The reverse situation applies concerning the clock inputs to make the counter decrement 
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its value. Consequently, when generating the P15 and P14 clockwise and anticlockwise 
signals, we actually require the complement of the CW and AW signals (as defined 
previously) to provide the CPU and CPD clock signals respectively. Consequently if we are 
using K-maps to determine the simplified Boolean expressions for P15 and P14, we should 
group the ‘0’s and any don’t care states (rather than grouping the ‘1’s and the don’t care 
states) in the map.  

NOTE: As indicated, we make the outputs from the shaft encoder (B and A) synchronous by 
using 2 FFs before these signals are applied to the 2 FFs that implement the FSM. To do 
this, make sure that the PAL compiler is in registered mode. 

Implementation task 1: Now run your equations through the PAL compiler. Read the 
Appendix on PALs and the PAL compiler if you are unfamiliar with them. The compiler 
should be running on a stand-alone PC connected to the programmer. 

Implementation task 2: Now connect your PAL to a rotary encoder and your two outputs to 
LEDs. Connect the clock to pin 1 and make sure that the output enable (pin 11) is 
connected to ground. To test your design start by setting the clock to 10Hz. Make sure that 
each LED flashes once as the rotary encoder is moved one output combination clockwise or 
anticlockwise. 

Step 2 - count clockwise/anticlockwise pulses 

Implementation task: Use the clockwise/anticlockwise signals as up/down count signals for 
the 74HC193 counter. Connect the output of the counter to the 7-segment display. Make 
sure the unused inputs of the 74HC193 and tied off appropriately. 

Optional Bonus Step 

Task: How could you make use of two 74HC193 chips to provide an 8-bit up/down counter? 

Assessment 

Ticking criteria: Write up your design and answer the following questions. Demonstrate 
that your rotary position counter works. Once your work has met the Common Ticking 
Criteria (see Introduction), get your work ticked by an assessor. Remember that you need 
to hand in this assessed exercise as part of your portfolio of work (see the Head of 
Department's notice). 

Questions 

1. Why didn't we ask you to debounce the inputs from the rotary encoder? 
2. How fast can the rotary encoder be rotated before your circuit fails to count correctly? 
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Appendix – PALs and the PAL Compiler 

A PAL (programmable array logic) is a circuit which can be configured by the user to 
perform a logic function. It consists of an AND array followed by an OR array, the former 
being programmable. Inputs are fed into the AND array, which performs the desired AND 
functions and generates product terms. The various product terms are then fed into the OR 
array. In the OR array, the outputs of the various product terms are combined to produce the 
desired outputs. 

You will be using a small, relatively modern PAL called a GAL16V8. It has between 0 and 16 
inputs and 8 to 0 outputs respectively, a common configuration is for up to 8 inputs and up to 
8 outputs. Each output is driven by a single 8-input OR gate, which in turn is driven by eight 
32-input AND gates. These 32 inputs can be programmed to be connected to the 16 
possible inputs to the chip and their inverses. Note that when used to implement an FSM up 
to 8 of these inputs are actually outputs from the D-type FFs in each of the 8 output 
macrocells. 

 

 

 

 

 

 

 

The output from the each OR gate is connect to an output pin through an output macrocell. 
This can be programmed to latch (using a D-type FF) the output or feed the output signal 
back into AND array. For a more detailed description of this PAL, read the datasheet. 

PAL Compiler 

To program the PAL with the functions necessary to implement a state machine, you will 

need a PAL compiler. This will produce a JEDEC file which is needed by the programmer. 
You will be using a web-based compiler. You need to type in equations using variables p2 to 
p9 on the input side (representing the input pins) and p12 to p19 on the output side 
(representing output pins). 
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When using the PAL Compiler you should have the above diagram in mind. The compiler 
expects 8 equations, one to drive each output logic macrocell (OLMC). The OLMCs in turn 
drive pins 19 to 12. What the 16 inputs are depends on the configuration mode of the PAL. 
Pins 2 to 9 are always inputs, but in registered mode pins 12 to 19 make the other 8, in 
complex mode pins 1, 11 and 13 to 18 are used and in simple mode pins 1, 11 to 14 and 
17 to 19. The mode can be selected using the check boxes. 

The equations for each output (called P19 to P12, in that order) can consist of inputs, 
operators and brackets. The input must be referred to by the "P" followed by a number. 
Operators are &, |, ^ and ! for AND, OR, XOR and NOT respectively 
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Examples: 

P19 = p2 A simple assignment latch 

P19 = p2 ^ p3 
P18 = p2 & p3 

A half adder 

P19 = !p19 A 1-bit counter 

When you have typed in your equations, click the compile button. 
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Workshop Three – Debouncing a Switch 

Introduction 

When using a switch as an input to a digital circuit, several pit-falls may be encountered. 
The problem of switch `bounce' is the subject of this experiment, what it is, and ways 
(including an all-digital method) of overcoming it. 

Components 

 1a prototyping box 
 connecting wire 
 2 x 4K7 resistor 
 74HC00 - NAND gates 
 74HC193 counter 
 A PAL - GAL16V8 

Step 1 - Watch a switch bouncing 

Task: Build the following circuit on a breadboard using the blue non-debounced push-
switch. Connect a scope probe to the output. Look at the output on the scope as the 
contact is made and broken. This is best done by triggering off the switch and varying the 
timebase until the appropriate detail can be seen. 

 

Step 2 - Count bounces 

Task: Connect the output of the circuit in Step 1 to the clock input of the counter (make 
sure you connect the unused inputs appropriately). Connect the output to the 7-segment 
display. What should happen? Why doesn't it work? The object of the next step is to 
debounce the switch so that counter increments just once as the switch contact is made. 

Step 3 - Debouncing a double-throw switch 

You may be surprised to find that a double-throw switch is easier to debounce than single-
throw switch, so we'll start with a double-throw switch first. The circuit below illustrates a 
simple circuit with a double-throw switch and two pull-up resistors. The switch you will be 
using is a break before make switch, i.e., it is mechanically incapable of connecting both 
switch terminals together. What is the relationship between the two outputs if bounces only 
appear on one contact at a time? 
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Task: Build the above circuit. Design and build a circuit which takes OutputA and OutputB 
as input and produces a debounced output. Hint: this only requires one latch. 

Step 4 - Debouncing the push button switch 

Debouncing a switch can be done in many ways, both using analogue and digital 
techniques. For this workshop, use a PAL to implement a shift register with the switch as 
its input. You should not use the output of the first flip-flop since it may go metastable if the 
input changes too near the clock. When all of the other flip-flops in the shift register 
become high, the output of your debouncer should go high. When they're all low, the 
output should go low. 

Task: Design, build and test this digital switch debouncer. 

Optional Bonus Step 

How could you use an RC (resistor + capacitor) filter to remove bounce and what will this 
do to the slew rate (i.e., rate of change) of the signal? 

Assessment 

Ticking criteria: Write up your experimental data and final design, and then answer the 
following questions. Demonstrate that your debouncer works. 

Once your work has met the Common Ticking Criteria (see Introduction), get your work 
ticked by an assessor. Remember that you need to hand in this assessed exercise as part 
of your portfolio of work (see the Head of Department's notice). 

Questions 

1. Why is a switch debouncer necessary? 
2. How should you choose the clock frequency for the PAL based debouncer? 
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Workshop Four - Framestore for an LED Array 

Introduction 

This experiment is designed to show the operation of a framestore and introduce the use of 
a Static Random Access Memory (SRAM). 

The design uses the SRAM as a framestore for two 5x7 light emitting diode (LED) arrays. 
The LED display is made up from individual LEDs which are connected in a grid. 
Connecting a row (through a current limiting resistor) to the power rail and a column to 
ground lights the LED where they cross. This means that although each LED can be lit 
individually, an arbitrary pattern cannot be displayed merely by applying constant voltages 
to the row and column inputs. Instead, the array must be scanned, preferably at a rate at 
which the display does not appear to flicker. In this experiment, the pattern to be displayed 
is to be read from an SRAM.  

 

Components 

 1a prototyping box 
 connecting wires 
 Holtek HT6116-70 SRAM 
 74HC541 octal tri-state buffer 
 74HC00 quad NAND gates 
 74HC193 4-bit synchronous binary counter 
 74HC74 dual D flip-flop 
 Binary-coded rotary switch 
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Step 1 - Make the LED matrix light up 

Task: Use the 74HC193 IC to produce a 4-bit counter. Make sure that the unused input pins 
are tied appropriately. Use this 4 bit value as the column address for scanning the LED 
array. Tie the row inputs to logic 1 (the supply voltage). 

Step 2 - Connect the SRAM to the LED matrix 

Task: Use the same 4-bit value as the address for the SRAM and connect the data output 
from the SRAM to the rows of the array, making sure that the CS, OE and WR pins are tied 
appropriately to fix the chip in read mode. Unused address pins should be connected to 
ground. 

 

Your circuit should now display the random contents for SRAM on the array. Turn your 
power supply on and off several times to see if the pattern changes. 

Step 3 - Add an SRAM write circuit 

Task 1: The next part of this experiment is to add some circuitry to allow values to be 
written into the SRAM. The complete circuit should look something like this: 
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Connect the output of the 74HC541 octal buffer to the data bus, and use seven toggle 
switches as its input. Now connect the column selector (binary coded rotary switch) to the 
input of the binary counter. When complete, you should be able to write the data from the 
toggle switches into the SRAM at the address supplied by the column selector. This should 
only happen when a write button is pressed. 

Task 2: Design the control circuit using a 74HC74 and a 74HC00 chip. The behaviour is as 
follows: as the write button (use the debounced switch) is pressed, the value from the rotary 
switch should be loaded into the binary counter. The value from the row switches should be 
driven onto the data bus, and the write pin on the SRAM chip should be pulsed. Inputs to 
the control circuit will be the clock and the write button. It needs to produce three outputs: 
an enable signal for the octal buffer, a write pulse for the SRAM and a load signal for the 
counter. Start by producing a timing diagram showing the clock oscillating and the switch 
being pressed. Fill in what you want the outputs to do as the switch is pressed and goes 
high. You might like a demonstrator to check before proceeding to the final design. 

Tips: 

 The write button should be synchronised with the clock before it is used. This can be 
done by passing it through a latch. 

 The SRAM data bus now has another driver, a 74HC541 octal buffer. Care should 
be taken to ensure that the SRAM and the buffer do not drive this bus at the same 
time.  

 In order to write into the SRAM, its write pin should be pulsed low. Remember to 
ensure that the address inputs do not change during the write operation and that the 
data input must be valid at the end of write operation but do not need to be valid at 
the start. 

 The load of the binary counter is asynchronous. The output value changes 
immediately, and does not wait for the next rising edge of the clock.  
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 The column selector needs 4 x 4K7 pull-down resistors on its outputs. 

Optional Bonus Step 

Implement a "clear display" button which writes zeros into the SRAM. 

Assessment 

Ticking criteria: Write up your experimental data and final design, and then answer the 
following questions. Demonstrate that your circuit works correctly: you should be able to 
specify a column on the LED array with the column selector and the data pattern for that 
column with the toggle switches. Pressing the write button should make the pattern 
permanent. 

Once your work has met the Common Ticking Criteria (see Introduction), get your work 
ticked by an assessor. Remember that you need to hand in this assessed exercise as part 
of your portfolio of work (see the Head of Department's notice). 

Note: because this workshop is a little tricky, one tick is awarded for completing steps 1 and 
2 and question 1, and the other tick for step 3 and question 2. 

Questions 

1. Each LED in the matrix can draw a maximum current of 5mA. What is the maximum 
current that the two LED arrays can draw during the operation of the frame store? 
2. What would happen if the write button was not synchronised? 
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Workshop Five – nMOS, pMOS and CMOS Inverters 

Introduction 

In this workshop you will build nMOS, pMOS and CMOS inverters and then measure their 
characteristics. 

Components 

 oscilloscope 
 1a prototyping box 
 connecting wire 
 pair of matched nMOS (ZVN3306A) and pMOS (ZVP2106A) FETs 

 27 4704.7k resistors 
 330nF capacitor 

Step 1: Characterise nMOS Inverters 

Task 1: For the nMOS inverter circuit shown below with R1 = 27, use the adjacent 
transistor characteristics (a larger version of which is reproduced in Appendix 1) to 
estimate Vout for VGS = 0V, 3V, 4V and 5V. Build the circuit on the breadboard and measure 
Vout at the specified values of VGS using the oscilloscope (and its voltage cursor function) 
and compare them with the estimated values. Make sure you properly identify which of the 
FET leads is the source (S), drain (D) and gate (G) before inserting it into the breadboard. 
Connect the potentiometer and resistor R1 as shown.  

 

 

 

 

 

 

 
 

Task 2: To characterize this inverter at a more realistic value of drain current, now make 

R1 = 4.7k. You will need to measure how the output voltage Vout varies with the input 
voltage VGS. Connect one of the oscilloscope probes to the drain of the transistor and the 
other to the gate. Vary the gate voltage in steps from 0 to 5V using the potentiometer. At 
each step, measure the voltage at the drain. Note that over wide ranges of gate voltage 
the drain voltage will be constantly near to either  5V or 0V, consequently you do not need 
to use constant step sizes over the entire range and you only need to use small step sizes 
(say 0.2V) where the drain voltage changes rapidly. Plot a graph of drain vs gate voltage 
showing the transistor switching. 

For the nMOS inverter, how does the current flowing through the transistor vary as the 
gate voltage increases? 

R1 
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Task 3: Investigate the effect of capacitive loading. To do this include a 330nF capacitor 
(C) at the output of the nMOS inverter, i.e., connect it between Vout and GND (OV). 
Disconnect the potentiometer from the input VGS and instead connect VGS to the Clock 
Generator output. Set the operating frequency to say 100Hz initially, but be prepared to 
change it if required later on when performing measurements of output transition times. 
Sketch the input and output signals observed using the oscilloscope. Specifically, for the 
output rising edges measure the time it takes for the signal to rise from 0V to 0.63*5V = 
3.15V and compare this with the time constant CR1. Now for the output falling edges, 
measure the time it takes for the signal to fall from 5V to 0.37*5V = 1.85V. Why is this 
much shorter than the rise time? Now estimate the ON resistance of the FET. 
 

Now make R1 = 470andthen repeat the previous measurements. What is the 
advantage and what is the disadvantage of increasing R1? 
 

Step 2: Investigate pMOS Inverters 

Task 1: Investigate the effect of capacitive loading. Build the pMOS inverter circuit shown 

below with R1 = 4.7k load capacitor C = 330nF and connect Vin to the Clock Generator 
output. Sketch the input and output signals observed using the oscilloscope and perform 
similar measurements to that undertaken in Step 1, Task 3 concerning the output rise and 
fall times. Compare this waveform with that recorded previously in Task 3, highlighting the 
significant differences. Calculate the theoretical waveform falling edge time (as defined in 
Task 3) and use the rising edge measurement to estimate the ON resistance of the pMOS 
FET. 

 

Step 3: Characterise a CMOS inverter 

Task 1: The CMOS inverter circuit shown in the following figure effectively combines the 
nMOS and pMOS inverters shown previously. First characterise the input-output 
characteristic by repeating the measurement procedure in Step 1, Task 2. For the CMOS 
inverter, how does the current flowing through the transistor vary as the input voltage 
increases? 

WARNING: ensure you connect the source and drains of the transistors as shown since if 
you get them the wrong way around the transistors will conduct and burn out! 

R1

Vout

5V

GND

Vin

C

S

G

D
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Task 2: Investigate the effect of capacitive loading. To do this add a 330nF capacitor (C) at 
the output, i.e., connect it between Vout and GND (OV). Disconnect the potentiometer from 
the inverter input and instead connect the inverter input to the Clock Generator output. Set 
the operating frequency to say 100Hz initially, but be prepared to change it if required later 
on when performing measurements of output transition times. Sketch the input and output 
signals observed using the oscilloscope. Compare this waveform with those observed 
previously for the nMOS and pMOS inverters and note down the significant differences. 
What other advantage does the CMOS inverter have over the nMOS and pMOS inverters? 

Assessment 

Ticking criteria: Write up your experimental data and answer the questions. 

Once your work has met the Common Ticking Criteria (see Introduction), get your work 
ticked by an assessor. Remember that you need to hand in this assessed exercise as part 
of your portfolio of work (see the Head of Department's notice). 
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Appendix 1 – nMOS Transistor Characteristics 
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Workshop Six - Digital-to-Analogue Conversion 

Introduction 

In this workshop, you will build two different kinds of digital-to-analogue converter (DAC). 
The first uses a resistor network called an R2R ladder, and works in parallel, i.e., a binary 
value is fed into the resistor network in parallel and a corresponding analogue signal is 
output. The second DAC (known as a 1-bit DAC) is all digital and uses a clock and a state 
machine to produce a single output. The output fed through an analogue low pass filter 
which removes the high frequency digital component leaving an average of the ones and 
zeros as the analogue output. The more ones that are in the sequence will cause the output 
voltage to rise, while the more zeros will cause the output voltage to fall. 

Components 

 1a prototyping box 

 1 x 110 resistor 

 6 x 4k7 resistors 
 1 x 74HC283 adder 
 1 x 74HC374 octal D-type flip-flop 

 1 x 0.1F capacitor 
 1 x light bulb and holder 
 nMOS FET (ZVN3306A) 
 Binary-coded rotary switch (optional) 

Step 1: R2R ladder DAC 

Task 1: Consider the following resistor 
network and answer questions 1 and 2. 

Task 2: Now consider the inverted version of 
this resistor network and answer question 1 
again. 

 

 

Step 2: Build the R2R DAC 

Task 1: Construct the inverted DAC using 4.7k resistors to replace the 2 resistors, and 

two 4.7k resistors in parallel to replace the 1 resistors. Use the toggle switches as input 
and check that the output voltages are correct as the inputs are changed. 

Task 2: Now connect an nMOS transistor and resistor load to form a voltage follower as 
shown in the following figure. Answer questions 3, 4 and 5. 
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Voltage Follower Driving a 110 Load 

Step 3: Build a 1-bit DAC (Bitstream DAC) 

Use either four of the switches on the right-hand side of the breadboard or else the binary 
coded rotary switch to generate the desired input value. 

Task 1: Consider the 
waveforms and answer 
question 6. 

 

 
 
 
 
 
Task 2: Consider the 
circuit diagram below. The 
74HC283 is a 4-bit adder 
with carry-in and carry-out. 
The 74HC374 contains 8 
D-type flip-flops (although 
this circuit only uses 4 of 
them). Answer question 7. 
Construct this circuit and 
verify that it works. 
 

 

 

Task 3: One way to convert this waveform into a steady 
voltage (the average voltage) is to filter the output 
through a low-pass filter. This will remove the high 
frequency component in the waveform. Set the clock to 

100kHz, and try a resistor value of 4.7k and a 0.1F 
capacitor. Using an oscilloscope, verify that the output is 
filtered and corresponds to the binary input selected. 
Answer question 8. 

 

G D

  
S
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Task 4: Replace the output filter with a light bulb and 
nMOS driver transistor as shown below. Since the 
temperature of the light bulb filament has inertia, it 
provides a filtering effect on the light output. Answer 
question 9. 

 

Assessment 

Ticking criteria: Write up your experimental data and answer the following questions. 

Once your work has met the Common Ticking Criteria (see Introduction), get your work 
ticked by an assessor. Remember that you need to hand in this assessed exercise as part of 
your portfolio of work (see the Head of Department's notice). 

Questions 

1. Using Ohm's law and the formula for resistors in parallel, what is the output voltage of the 
R2R DAC when inputs A and B are connected to each combination of ground and 5 volts? 
Please display the results as a table. 
2. How much current will flow through this resistor network when input B is connected to 5 
volts and A to ground? 
3. How much current flows through the load when the gate voltage is at its maximum? Give 
the values of two parameters of the circuit, apart from the supply voltage, that limits the 
current? 
4. Why is it a good idea to use a voltage follower on the output of the R2R DAC resistor 
network? 
5. Why is the inverted version of the R2R DAC used with the voltage follower rather than 
using the non-inverted form? 
6. What is the long-term average voltage of each of the 1-bit DAC waveforms? 
7. For the 1-bit DAC, if the input has a fixed value 7 (0111 in binary), and the flip-flops all 
start at zero, what values do the flip-flops attain in the next 16 clock cycles and what value 
does carry-out take in each cycle? 
8. If you were going to design a 16-bit DAC for audio purposes (e.g., CD player output), how 
would the resistor tolerances affect the errors in the output for R2R and 1-bit DAC 
implementations? 
9. How does the power efficiency of the R2R DAC with voltage follower compare with the 1-
bit DAC with driver transistor? 
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