
Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

L7 94



Equivalent regular expressions
Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

L7 95



Equivalent regular expressions
Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

L7 95



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

L7 96



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

L7 96



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

L7 96



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

L7 96



Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any given DFA M, whether or not it accepts some string.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

L7 96



The Pumping Lemma

L7 97



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

L7 98



Examples of languages that are
not regular

! The set of strings over {(, ), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

! The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

! {anbn | n ≥ 0}

L7 100



The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1
satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

! |v| ≥ 1
(i.e. v ̸= ε)

! |u1v| ≤ ℓ

! for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway], u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)

L7 101



Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0
a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 ! a1 . . . ai v ! ai+1 . . . aj u2 ! aj+1 . . . an

L7 103



How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0
for which u1vnu2 is not in L

⎫

⎬

⎭
(†)

L7 104



Examples

None of the following three languages are regular:

(i) L1 ! {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on Slide 104.]

(ii) L2 ! {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 ! {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and

has property (†).]

L7 105























Example of a non-regular language
with the pumping lemma property

L ! {cmanbn | m ≥ 1 & n ≥ 0}∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property on Slide 101 with
ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.

L7 108


















