Regular Languages

Kleene's Theorem

Definition. A language is **regular** iff it is equal to L(M), the set of strings accepted by some deterministic finite automaton M.

Theorem.

- (a) For any regular expression r, the set L(r) of strings matching r is a regular language.
- (b) Conversely, every regular language is the form L(r) for some regular expression r.

[p64] Kleene Theorem, part (a)

Use Mathematical Induction to prove Vn. P(n) where

 $P(n) = \begin{array}{l} \text{for all reg. oxp. abstract Syntax} \\ P(n) = \begin{array}{l} \text{trees } r \quad \text{of Size} \leq n, \text{ there} \\ \text{is an NFA}^{\varepsilon} \quad M \quad \text{with} \quad L(M) = l(r) \end{array}$ (Can use subset construction [p59] to get a DFA PM with L(PM) = L(M) = L(r).)

Regular expressions (abstract syntax) (Con crede) The 'signature' for regular expression abstract syntax trees (over an alphabet Σ) consists of

- binary operators Union and Concat
- unary operator Star
- ▶ nullary operators (constants) Null, Empty and Sym_a (one for each $a \in \Sigma$).

3

- (i) **Base cases:** show that $\{a\}$, $\{\varepsilon\}$ and \emptyset are regular languages.
- (ii) Induction step for $r_1 | r_2$: given NFA^{ε}s M_1 and M_2 , construct an NFA^{ε} Union (M_1, M_2) satisfying

 $L(Union(M_1, M_2)) = \{u \mid u \in L(M_1) \lor u \in L(M_2)\}$

Thus if $L(r_1) = L(M_1)$ and $L(r_2) = L(M_2)$, then $L(r_1|r_2) = L(Union(M_1, M_2))$.

- (i) **Base cases:** show that $\{a\}$, $\{\varepsilon\}$ and \emptyset are regular languages.
- (ii) Induction step for $r_1 | r_2$: given NFA^{ε}s M_1 and M_2 , construct an NFA^{ε} Union (M_1, M_2) satisfying

 $L(Union(M_1, M_2)) = \{u \mid u \in L(M_1) \lor u \in L(M_2)\}$

Thus if $L(r_1) = L(M_1)$ and $L(r_2) = L(M_2)$, then $L(r_1|r_2) = L(Union(M_1, M_2))$.

(iii) Induction step for r_1r_2 : given NFA^{ε}s M_1 and M_2 , construct an NFA^{ε} Concat (M_1, M_2) satisfying

 $L(Concat(M_1, M_2)) = \{u_1 u_2 \mid u_1 \in L(M_1) \& u_2 \in L(M_2)\}$

Thus $L(r_1r_2) = L(Concat(M_1, M_2))$ when $L(r_1) = L(M_1)$ and $L(r_2) = L(M_2)$.

- (i) **Base cases:** show that $\{a\}$, $\{\varepsilon\}$ and \emptyset are regular languages.
- (ii) Induction step for $r_1 | r_2$: given NFA^{ε}s M_1 and M_2 , construct an NFA^{ε} Union (M_1, M_2) satisfying

 $L(Union(M_1, M_2)) = \{u \mid u \in L(M_1) \lor u \in L(M_2)\}$

Thus if $L(r_1) = L(M_1)$ and $L(r_2) = L(M_2)$, then $L(r_1|r_2) = L(Union(M_1, M_2))$.

(iii) Induction step for r_1r_2 : given NFA^{ε}s M_1 and M_2 , construct an NFA^{ε} Concat (M_1, M_2) satisfying

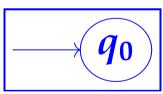
 $L(Concat(M_1, M_2)) = \{u_1u_2 \mid u_1 \in L(M_1) \& u_2 \in L(M_2)\}$

Thus $L(r_1r_2) = L(Concat(M_1, M_2))$ when $L(r_1) = L(M_1)$ and $L(r_2) = L(M_2)$.

(iv) Induction step for r^* : given NFA^{ε} M, construct an NFA^{ε} Star(M) satisfying $L(Star(M)) = \{u_1u_2...u_n \mid n \ge 0 \text{ and each } u_i \in L(M)\}$ Thus $L(r^*) = L(Star(M))$ when L(r) = L(M).

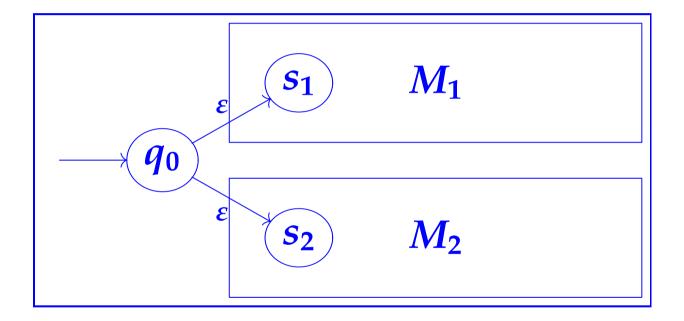
NFAs for regular expressions a, ϵ, \emptyset

$$- q_0 \xrightarrow{a} q_1$$
 just accepts the one-symbol string a

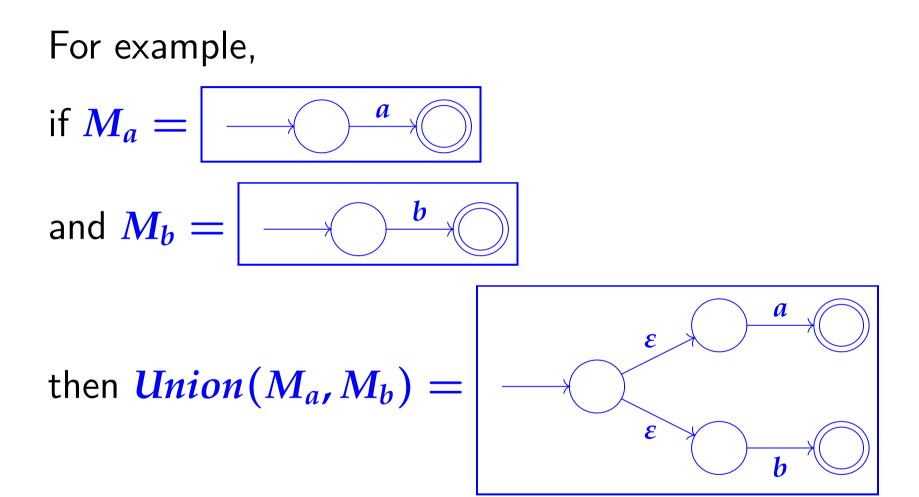


accepts no strings

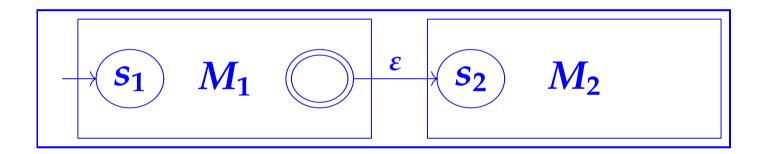
$Union(M_1, M_2)$



accepting states = union of accepting states of M_1 and M_2

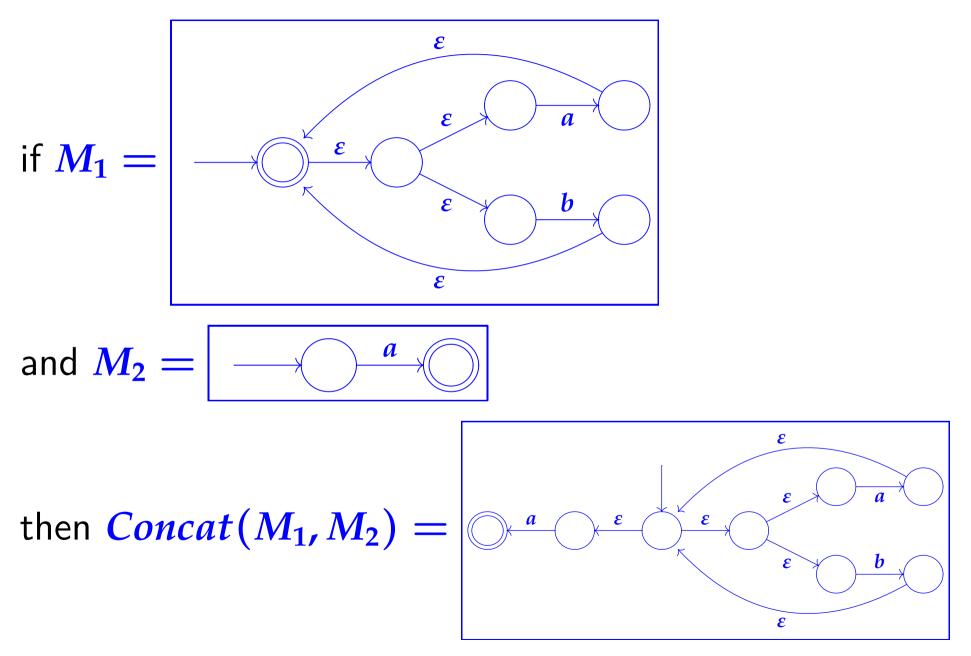


 $Concat(M_1, M_2)$

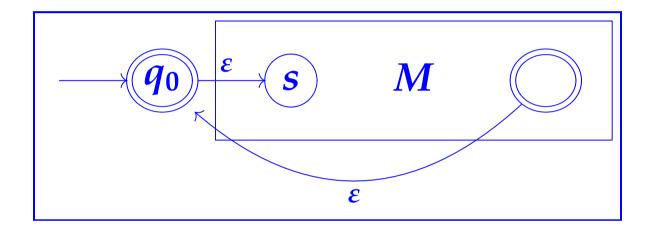


accepting states are those of M_2

For example,

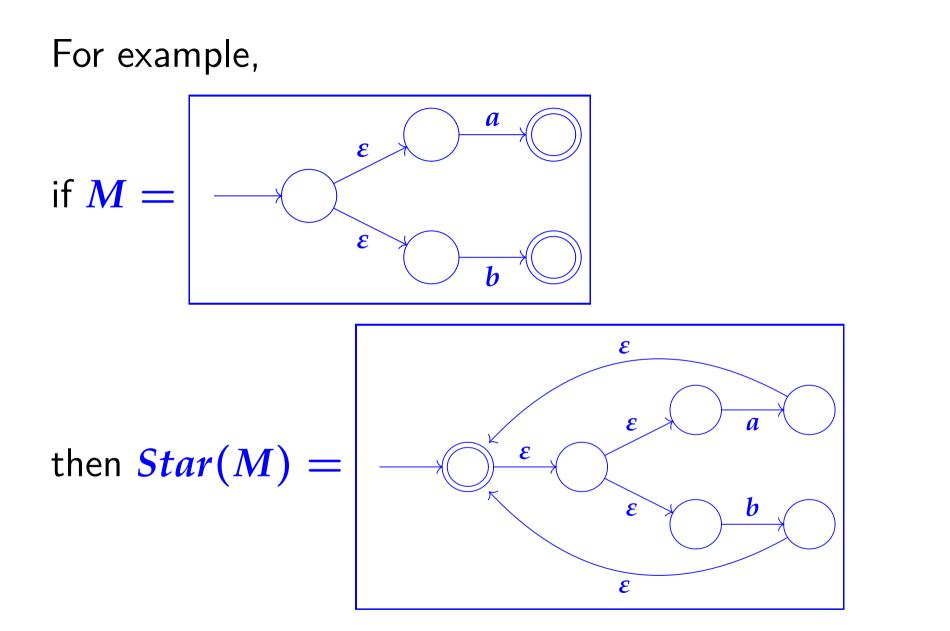


Star(M)



the only accepting state of Star(M) is q_0

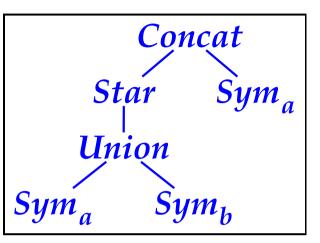
(N.B. doing without q_0 by just looping back to s and making that accepting won't work – Exercise 4.1.)



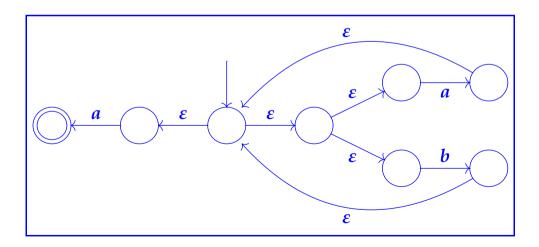
Example

Regular expression $(a|b)^*a$

whose abstract syntax tree is



is mapped to the NFA^{ε} Concat(Star(Union(M_a, M_b)), M_a) =



(*cf.* Slides 68, 71 and 74).

Some questions

- (a) Is there an algorithm which, given a string *u* and a regular expression *r*, computes whether or not *u* matches *r*?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions *r* and *s*, computes whether or not they are equivalent, in the sense that *L(r)* and *L(s)* are equal sets?
- (d) Is every language (subset of Σ^*) of the form L(r) for some r?

Decidability of matching

We now have a positive answer to question (a) on Slide 38. Given string \boldsymbol{u} and regular expression \boldsymbol{r} :

• construct an NFA^{ε} M satisfying L(M) = L(r);

- in *PM* (the DFA obtained by the subset construction, Slide 59) carry out the sequence of transitions corresponding to *u* from the start state to some state *q* (because *PM* is deterministic, there is a unique such transition sequence);
- check whether q is accepting or not: if it is, then $u \in L(PM) = L(M) = L(r)$, so u matches r; otherwise $u \notin L(PM) = L(M) = L(r)$, so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2^n states if M has n. This makes the method described above potentially inefficient – more efficient algorithms exist that don't construct the whole of PM.)