Finite Automata

Example of a finite automaton

- ▶ set of states: {q₀, q₁, q₂, q₃}
- input alphabet: {a, b}
- transitions, labelled by input symbols: as indicated by the above directed graph
- ► start state: q₀
- accepting state(s): q₃

Language accepted by a finite automaton *M*

- Look at paths in the transition graph from the start state to *some* accepting state.
- Each such path gives a string of input symbols, namely the string of labels on each transition in the path.
- ► The set of all such strings is by definition the language accepted by M, written L(M).

Notation: write $q \xrightarrow{u} q' q'$ to mean that in the automaton there is a path from state q to state q' whose labels form the string u.

(**N.B.**
$$q \xrightarrow{\varepsilon} q'$$
 means $q = q'$.)

Example of an accepted language

For example

• $aaab \in L(M)$, because $q_0 \xrightarrow{aaab} q_3$

▶ *abaa* $\not\in L(M)$, because $\forall q(q_0 \xrightarrow{abaa} q \Leftrightarrow q = q_2)$

Example of an accepted language

Claim:

$$L(M) = L((a|b)^* aaa(a|b)^*)$$

set of all strings matching the
regular expression $(a|b)^* aaa(a|b)^*$

 $(q_i \text{ (for } i = 0, 1, 2) \text{ represents the state in the process of reading a string in which the last <math>i \text{ symbols read were all } a\text{ s})$

Non-deterministic finite automaton (NFA)

is by definition a 5-tuple $M = (Q, \Sigma, \Delta, s, F)$, where:

- ► **Q** is a finite set (of **states**)
- Σ is a finite set (the alphabet of **input symbols**)
- Δ is a subset of $Q \times \Sigma \times Q$ (the **transition relation**)
- ▶ **s** is an element of **Q** (the **start state**)
- ► **F** is a subset of **Q** (the **accepting states**)

Notation: write " $q \xrightarrow{a} q'$ in M" to mean $(q, a, q') \in \Delta$.

Example of an NFA

Input alphabet: $\{a, b\}$.

States, transitions, start state, and accepting states as shown:

For example $\{q \mid q_1 \xrightarrow{a} q\} = \{q_2\}$ $\{q \mid q_1 \xrightarrow{b} q\} = \emptyset$ $\{q \mid q_0 \xrightarrow{a} q\} = \{q_0, q_1\}.$

The language accepted by this automaton is the same as for the automaton on Slide 44, namely $\{u \in \{a, b\}^* \mid u \text{ contains three consecutive } a's\}$.

Deterministic finite automaton (DFA)

A deterministic finite automaton (DFA) is an NFA $M = (Q, \Sigma, \Delta, s, F)$ with the property that for each state $q \in Q$ and each input symbol $a \in \Sigma_M$, there is a unique state $q' \in Q$ satisfying $q \xrightarrow{a} q'$.

In a DFA $\Delta \subseteq Q \times \Sigma \times Q$ is the graph of a function $Q \times \Sigma \to Q$, which we write as δ and call the **next-state function**.

Thus for each (state, input symbol)-pair (q, a), $\delta(q, a)$ is the unique state that can be reached from q by a transition labelled a:

 $\forall q'(q \xrightarrow{a} q' \Leftrightarrow q' = \delta(q, a))$

Example of a DFA

with input alphabet {a, b}

next-state function:	δ	a	b
	q 0	q 1	q 0
	q 1	q 2	q_0
	q 2	q 3	q_0
	q 3	q 3	q 3

Example of an NFA

with input alphabet {a, b, c}

M is non-deterministic, because for example $\{q \mid q_0 \xrightarrow{c} q\} = \emptyset$.

An NFA with ε -transitions (NFA^{ε}) $M = (Q, \Sigma, \Delta, s, F, T)$ is an NFA $(Q, \Sigma, \Delta, s, F)$ together with a subset $T \subseteq Q \times Q$, called the ε -transition relation.

Notation: write " $q \xrightarrow{\varepsilon} q'$ in M" to mean $(q, q') \in T$. (**N.B.** for NFA^{ε}s, we always assume $\varepsilon \notin \Sigma$.) Language accepted by an NFA^{ε}

$M = (Q, \Sigma, \Delta, s, F, T)$

- Look at paths in the transition graph (including *e*-transitions) from start state to *some* accepting state.
- Each such path gives a string in Σ*, namely the string of non-ε labels that occur along the path.
- ► The set of all such strings is by definition the language accepted by M, written L(M).

Notation: write $q \stackrel{u}{\Rightarrow} q'$ to mean that there is a path in M from state q to state q' whose non- ε labels form the string $u \in \Sigma^*$.

An NFA with ε -transitions (NFA^{ε}) $M = (Q, \Sigma, \Delta, s, F, T)$ is an NFA $(Q, \Sigma, \Delta, s, F)$ together with a subset $T \subseteq Q \times Q$, called the ε -transition relation.

For this NFA^{ε} we have, e.g.: $q_0 \stackrel{aa}{\Rightarrow} q_2$, $q_0 \stackrel{aa}{\Rightarrow} q_3$ and $q_0 \stackrel{aa}{\Rightarrow} q_7$.

In fact the language of accepted strings is equal to the set of strings matching the regular expression $(a|b)^*(aa|bb)(a|b)^*$.

Example of the subset construction

 \boldsymbol{M} next-state function for PMb a a \oslash **q**₁ $\{q_0, q_1, q_2\} \{q_2\}$ $\{q_0\}$ $\{q_1\}$ $\{q_1\}$ 8 $\{q_2\}$ Ø $\{q_2\}$ *q*₀ a $| \{q_0, q_1, q_2\} \{q_2\}$ $\{q_0, q_1\}$ **E q**2 h

Theorem. For each NFA^{ε} $M = (Q, \Sigma, \Delta, s, F, T)$ there is a DFA $PM = (\mathcal{P}(Q), \Sigma, \delta, s', F')$ accepting exactly the same strings as M, i.e. with L(PM) = L(M).

Definition of **PM**:

- ▶ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set Q of states of M
- same input alphabet Σ as for M
- next-state function maps each $(S, a) \in \mathcal{P}(Q) \times \Sigma$ to $\delta(S, a) \triangleq \{q' \in Q \mid \exists q \in S. q \stackrel{a}{\Rightarrow} q' \text{ in } M\}$
- start state is $s' \triangleq \{q' \in Q \mid s \stackrel{\varepsilon}{\Rightarrow} q'\}$
- ▶ subset of accepting sates is $F' \triangleq \{S \in \mathcal{P}(Q) \mid S \cap F \neq \emptyset\}$

To prove the theorem we show that $L(M) \subseteq L(PM)$ and $L(PM) \subseteq L(M)$.

Suppose $a_1a_2 \cdots a_n \in L(M)$ LPP60,61] So have $\begin{array}{ccc} a_{1} & a_{2} & a_{n} \\ S \Longrightarrow q_{1} \Longrightarrow & \cdots & \Longrightarrow q_{n} \in F \end{array}$ in M

Suppose $a_1a_2\cdots a_n \in L(M)$ So have $\begin{array}{ccc} a_{1} & a_{2} & a_{n} \\ S \Longrightarrow q_{1} \Longrightarrow \cdots \Longrightarrow q_{n} \in F \end{array}$ in M $S' \xrightarrow{a_1} S_1$ " d(s;a,)

Suppose $a_1a_2\cdots a_n \in L(M)$ So have $\begin{array}{ccc} a_{1} & a_{2} & a_{n} \\ S \Longrightarrow q_{1} \Longrightarrow & \cdots & \Longrightarrow q_{n} \in F \end{array}$ in M

Suppose $a_1a_2\cdots a_n \in L(M)$ So have $a_2 \qquad a_n \qquad \Rightarrow g \in F$ $S \xrightarrow{a_1}$ in M an 1 ` **()** $a_1 \stackrel{\prime \prime}{\longrightarrow} a_2$ $S' \stackrel{\sim}{\longrightarrow} S, \stackrel{\sim}{\longrightarrow}$ So SnEF'&

Suppose $a_1a_2\cdots a_n \in L(M)$ So have $a_1 a_2 a_n A_1$ $a_1 a_2 a_n A_1 A_2 A_1 A_2 A_1 A_2 A_2 A_1 A_2 A_2 A_1 A_2 A_1$ PM $a_1 a_2 \cdots a_n \in (IPM)$ So

Suppose a₁a₂...a_n EL(PM) so home $S' \xrightarrow{\alpha_1} S_1 \xrightarrow{\alpha_2} \cdots S_{n-1} \xrightarrow{\alpha_n} S_n \in F' \text{ in PM}$

Suppose a₁a₂...a_n EL(PM) so home $S' \xrightarrow{\alpha_1} S_1 \xrightarrow{\alpha_2} \cdots S_{n-1} \xrightarrow{\alpha_n} S_n \in F' \text{ in } PM$ qne F

Suppose a₁a₂...a_n EL(PM) so home $S' \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots S_n \xrightarrow{a_n} S_n \in F' \text{ in PM}$ Van U in M

Suppose a₁a₂...a_n EL(PM) hone 62 $S' \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots S_n \xrightarrow{a_n} S_n \in F' \text{ in PM}$ (/) $q \xrightarrow{a_n} q_n \in F$ in M 3'|

Suppose $a_1a_2 \cdots a_n \in L(PM)$ hone 68 $S_{n-1} \rightarrow S_n \in F'$ $S' \xrightarrow{\alpha_1}$ in PM - -9°E 3 $a_n \in L(M)$ 92 So