Formal Languages and Automata

7 lectures for 2014 CST Part IA Discrete Mathematics by Prof. Andrew Pitts

© 2014 AM Pitts

Syllabus for this part of the course

- Inductive definitions using rules and proofs by rule induction.
- Abstract syntax trees.
- Regular expressions and pattern matching.
- Finite automata and regular languages: Kleene's theorem.
- ► The Pumping Lemma.

Common theme: mathematical techniques for defining formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

L1

Part IB Compiler Construction, Computation Theory, Complexity Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers, Denotational Semantics, Temporal Logic and Model Checking

N.B. we do <u>not</u> cover the important topic of <u>context-free grammars</u>, which prior to 2013/14 was part of the CST IA course *Regular Languages and Finite Automata* that has been subsumed into this course.

see course web page for relevant Tripos questions,

Formal Languages

Alphabets

An **alphabet** is specified by giving a finite set, Σ , whose elements are called **symbols**. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

- ▶ {0,1,2,3,4,5,6,7,8,9}, 10-element set of decimal digits.
- {a, b, c, ..., x, y, z}, 26-element set of lower-case characters of the English language.
- ▶ $\{S \mid S \subseteq \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\}$, 2¹⁰-element set of all subsets of the alphabet of decimal digits.

Non-example:

► N = {0, 1, 2, 3, ...}, set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

- A string of length *n* (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered *n*-tuple of elements of Σ . written without punctuation.
- Σ^* denotes set of all strings over Σ of any finite length.

Examples:

notation for the

- If $\Sigma = \{a, b, c\}$, then ε , a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If $\Sigma = \{a\}$, then Σ^* contains ε , a, aa, aaa, aaaa, etc.

In general, a^n denotes the string of length *n* just containing *a* symbols

Strings over an alphabet

- A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.
- Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- If Σ = {a,b,c}, then ε, a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If Σ = {a}, then Σ* contains ε, a, aa, aaa, aaaa, etc.
- If $\Sigma = \emptyset$ (the empty set), then what is Σ^* ?

Strings over an alphabet

- A string of length n (for n = 0, 1, 2, ...) over an alphabet Σ is just an ordered n-tuple of elements of Σ , written without punctuation.
- Σ^* denotes set of all strings over Σ of any finite length.

Examples:

- If Σ = {a,b,c}, then ε, a, ab, aac, and bbac are strings over Σ of lengths zero, one, two, three and four respectively.
- If Σ = {a}, then Σ* contains ε, a, aa, aaa, aaaa, etc.
- If $\Sigma = \emptyset$ (the empty set), then $\Sigma^* = \{\varepsilon\}$.

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

If $\Sigma = \{a, b, c, ..., z\}$ and $u, v, w \in \Sigma^*$ are u = ab, v = ra and w = cad, then

vu = raab uu = abab wv = cadra uvwuv = abracadabra

NB

Concatenation of strings

The **concatenation** of two strings u and v is the string uv obtained by joining the strings end-to-end. This generalises to the concatenation of three or more strings.

Examples:

If $\Sigma = \{a, b, c, ..., z\}$ and $u, v, w \in \Sigma^*$ are u = ab, v = ra and w = cad, then

vu = raab uu = abab wv = cadra uvwuv = abracadabraN.B. (uv)w = uvw = u(vw) $u\varepsilon = u = \varepsilon u$ (ang u,v,w)

Formal languages

An extensional view of what constitutes a formal language is that it is completely determined by the set of 'words in the dictionary':

Given an alphabet Σ , we call any subset of Σ^* a (formal) **language** over the alphabet Σ .

We will use inductive definitions to describe languages in terms of grammatical rules for generating subsets of Σ^* .

Inductive Definitions

Axioms and rules

for inductively defining a subset of a given set \boldsymbol{U}

Derivations

Given a set of axioms and rules for inductively defining a subset of a given set U, a **derivation** (or proof) that a particular element $u \in U$ is in the subset is by definition

a finite rooted tree with vertexes labelled by elements of \boldsymbol{U} and such that:

- the root of the tree is *u* (the conclusion of the whole derivation),
- each vertex of the tree is the conclusion of a rule whose hypotheses are the children of the node,
- each leaf of the tree is an axiom.

Example

Example derivations:

	8	8	8
ε	ab	ba	ab
ab	aabb	ba	ab
abaabb		abaabb	

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of U inductively defined by the axioms and rules consists of all and only the elements $u \in U$ for which there is a derivation with conclusion u.

For example, for the axioms and rules on Slide 15

- *abaabb* is in the subset they inductively define (as witnessed by either derivation on that slide)
- abaab is not in that subset (there is no derivation with that conclusion why?)

(In fact $u \in \{a, b\}^*$ is in the subset iff it contains the same number of a and b symbols.)

Example: transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **transitive closure** R^+ is the smallest (for subset inclusion) binary relation on X which contains R and which is **transitive** $(\forall x, y, z \in X. (x, y) \in R^+ \And (y, z) \in R^+ \Rightarrow (x, z) \in R^+).$

 R^+ is equal to the subset of $X \times X$ inductively defined by

axioms
$$\frac{1}{(x,y)}$$
 (for all $(x,y) \in R$)
rules $\frac{(x,y) \quad (y,z)}{(x,z)}$ (for all $x, y, z \in X$)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

 R^* is equal to the subset of $X \times X$ inductively defined by

axioms
$$\overline{(x,y)}$$
 (for all $(x,y) \in R$) $\overline{(x,x)}$ (for all $x \in X$)
rules $\frac{(x,y)}{(x,z)}$ (for all $x, y, z \in X$)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

Given axioms and rules for inductively defining a subset of a set U, we say that a subset $S \subseteq U$ is closed under the axioms and rules if

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

We use the theorem as method of proof: given a property P(u) of elements of U, to prove $\forall u \in I. P(u)$ it suffices to show

- **base cases:** P(a) holds for each axiom -a
- ► induction steps: $P(h_1) \& P(h_2) \& \cdots \& P(h_n) \Rightarrow P(c)$ holds for each rule $\frac{h_1 h_2 \cdots h_n}{c}$

(To see this, apply the theorem with $S = \{u \in U \mid P(u)\}$.)

Example: reflexive-transitive closure

Given a binary relation $R \subseteq X \times X$ on a set X, its **reflexive-transitive closure** R^* is defined to be the smallest binary relation on X which contains R, is both transitive and **reflexive** ($\forall x \in X. (x, x) \in R^*$).

