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Exercise Sheet

1 Inductive definitions

Exercise 1.1. Let L be the subset of {a, b}∗ inductively defined by the axiom
ε

and the

rules
u

aub
(one rule for each u ∈ {a, b}∗).

(a) Use rule induction to prove that every string in L is of the form anbn for some n ∈N.

(b) Use mathematical induction to prove ∀n ∈N. anbn ∈ L.

Conclude that L = {anbn | n ∈N}.

Exercise 1.2. Suppose R ⊆ X × X is a binary relation on a set X. Let R† ⊆ X × X be
inductively defined by the following axioms and rules:

(x, x) ∈ R† (x ∈ X),
(x, y) ∈ R†

(x, z) ∈ R† (x ∈ X and (y, z) ∈ R).

(a) Show that R† is reflexive and that R ⊆ R†.

(b) Use rule induction to show that R† is a subset of {(y, z) ∈ X × X | ∀x ∈ X. (x, y) ∈
R†⇒ (x, z) ∈ R†}. Deduce that R† is transitive.

(c) Suppose S ⊆ X × X is a reflexive and transitive binary relation and that R ⊆ S. Use
rule induction to show that R† ⊆ S.

(d) Deduce from (a)–(c) that R† is equal to R∗, the reflexive-transitive closure of R.

Exercise 1.3. Let L be the subset of {a, b}∗ inductively defined by the axiom
ab

and the

rules
au

au2 and
ab3u
au

(for all u ∈ {a, b}∗).

(a) Is ab5 in L? Give a derivation, or show there isn’t one.

(b) Use rule induction to show that every u ∈ L is of the form abn with n = 2k − 3m ≥ 0
for some k, m ∈N.

(c) Is ab3 in L? Give a derivation, or show there isn’t one.

(d) Can you characterize exactly which strings are in L?
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2 Regular expressions

Exercise 2.1. Find regular expressions over {0, 1} that determine the following languages:

(a) {u | u contains an even number of 1’s}

(b) {u | u contains an odd number of 0’s}

Exercise 2.2. Show that the inductive definition of the matching relation between strings
and regular expressions given on Slide 36 of the lecture notes has the properties listed on
Slide 35.

Exercise 2.3. Show that b∗a(b∗a)∗ and (a|b)∗a are equivalent regular expressions, that is, a
string matches one iff it matches the other.
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3 Finite automata

Exercise 3.1. For each of the two languages mentioned in Exercise 2.1 find a DFA that
accepts exactly that set of strings.

Exercise 3.2. Given an NFAε M = (Q, Σ, ∆, s, F, T), we write q u⇒ q′ to mean that there is
a path in M from state q to state q′ whose non-ε labels form the string u ∈ Σ∗. Show that
{(q, u, q′) | q u⇒ q′} is equal to the subset of Q× Σ∗ × Q inductively defined by the axioms
and rules

(q, ε, q)

(q, u, q′)
(q, u, q′′)

if q′ ε−→ q′′ in M

(q, u, q′)
(q, ua, q′′)

if q′ a−→ q′′ in M.

Exercise 3.3. The example of the subset construction given in the lecture notes constructs
a DFA with eight states whose language of accepted strings happens to be L(a∗b∗). Give a
DFA with the same language of accepted strings, but fewer states. Give an NFA with even
fewer states that does the same job.
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4 Regular Languages

Exercise 4.1. Why can’t the automaton Star(M) used in step (iv) of the proof of part (a)
of Kleene’s Theorem be constructed simply by taking M, making its start state the only
accepting state and adding new ε-transitions back from each old accepting state to its start
state?
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Exercise 4.2. Construct an NFAε M satisfying L(M) = L((ε|b)∗aab∗).

Exercise 4.3. Show that any finite set of strings is a regular language.

Exercise 4.4. Use the construction given in the proof of part (b) of Kleene’s Theorem to find
a regular expression for the DFA M whose state set is {0, 1, 2}, whose start state is 0, whose
only accepting state is 2, whose alphabet of input symbols is {a, b}, and whose next-state
function is given by the following table.

δ a b
0 1 2
1 2 1
2 2 1

Exercise 4.5. If M = (Q, Σ, ∆, s, F) is an NFA, let Not(M) be the NFA (Q, Σ, ∆, s, Q \ F)
obtained from M by interchaning the role of accepting and non-accepting states. Give an
example of an alphabet Σ and an NFA M with set of input symbols Σ, such that {u ∈ Σ∗ |
u /∈ L(M)} is not the same set as L(Not(M)).

Exercise 4.6. Let r = (a|b)∗ab(a|b)∗. Find a complement for r over the alphabet {a, b}, i.e. a
regular expressions ∼r over the alphabet {a, b} satisfying L(∼r) = {u ∈ {a, b}∗ | u /∈ L(r)}.

Exercise 4.7. Given DFAs Mi = (Qi, Σ, δi, si, Fi) for i = 1, 2, let And(M1, M2) be the DFA
(Q1 ×Q2, Σ, δ, (s1, s2), F1 × F2) where δ : (Q1 ×Q2)× Σ→ (Q1 ×Q2) is given by:

δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a))

for all q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ. Show that L(And(M1, M2)) is the intersection of L(M1)
and L(M2).
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5 The Pumping Lemma

Exercise 5.1. Show that there is no DFA M for which L(M) is the language on Slide 107.
[Hint: argue by contradiction. If there were such an M, consider the DFA M′ with the same
states as M, with alphabet of input symbols just consisting of a and b, with transitions all
those of M which are labelled by a or b, with start state δM(sM, c) (where sM is the start
state of M), and with the same accepting states as M. Show that the language accepted by
M′ has to be {anbn | n ≥ 0} and deduce that no such M can exist.]
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