Definition 75 The disjoint union $A \uplus B$ of two sets A and B is the set

$$A \uplus B = (\{1\} \times A) \cup (\{2\} \times B)$$

Thus,

 $\forall x. x \in (A \uplus B) \iff (\exists a \in A. x = (1, a)) \lor (\exists b \in B. x = (2, b)).$

Proposition 76 For all finite sets A and B,

 $\#(A \uplus B) = \#A + \#B$.

PROOF IDEA:
$$\#A = M$$
, $A = \{a_1, ..., a_m\}$
 $\#B = n$, $B = \{b_1, ..., b_n\}$

Notation 78 One typically writes a R b for $(a, b) \in R$.

Informal examples:

- ► Computation.
- ► Typing.
- ► Program equivalence.
- ► Networks.
- ► Databases.

Examples:

- Empty relation. $\emptyset : A \longrightarrow B$
- ► Full relation. $(A \times B) : A \longrightarrow B$
- ► Identity (or equality) relation. $I_A = \{ (a, a) \mid a \in A \} : A \longrightarrow A$

 $(a \emptyset b \iff false)$

 $(a (A \times B) b \iff true)$

(a I_A a' \iff a = a')

 $(m R_2 n \iff m = n^2)$

Internal diagrams

Example:

 $R = \{ (0,0), (0,-1), (0,1), (1,2), (1,1), (2,1) \} : \mathbb{N} \longrightarrow \mathbb{Z}$

Relational composition

Genter $R:A \rightarrow B$, $S:B \rightarrow C$ we define $SoR:A \rightarrow C$ $R_{3}S:A \rightarrow C$ By Q(Sok) c ⇐⇒ JbEB. aRb & bSc

His unambiguous to write To SoR

Theorem 79 Relational composition is associative and has the identity relation as neutral element.

Associativity. For all $R : A \rightarrow B$, $S : B \rightarrow C$, and $T : C \rightarrow D$, $(\mathsf{T} \circ \mathsf{S}) \circ \mathsf{R} = \mathsf{T} \circ (\mathsf{S} \circ \mathsf{R})$ Show Q [(Tos) ok] d Neutral element. $R \circ I_A = R = I_B \circ R \begin{bmatrix} I_B \\ I_B \\ R \end{bmatrix} \begin{bmatrix} I_B \\ I_B$ For all $\mathbb{R} : \mathbb{A} \longrightarrow \mathbb{B}$,

Relations and matrices

Definition 80

1. For positive integers m and n, an $(m \times n)$ -matrix M over a semiring $(S, 0, \oplus, 1, \odot)$ is given by entries $M_{i,j} \in S$ for all $0 \le i < m$ and $0 \le j < n$.

$$(m \times n) - m \rightarrow h \times M (n \times l) - m \rightarrow h \times M (n \times l) - m \rightarrow h \times M (L \cdot M)$$

 $(m \times l) - m \rightarrow h \times M (L \cdot M)$
 $(L \cdot M)_{i,j} = \bigoplus_{k=0}^{n-l} \prod_{k=0}^{n-l} M_{i,k}$

Theorem 81 Matrix multiplication is associative and has the identity matrix as neutral element.

$$-175$$

What if S is The Brolea. Semining. $M = i \left| \frac{1}{4me} \int_{alse} \right|$

Every M gives we a relation rel(M): [m] t > [n]where $[k] = \{0, 1, \dots, k-1\}$ defined by $i(rel M) j \iff M_{ij} = true$

gner a relation $R:(m) \rightarrow [n]$ define mot(R) by mot(R) in f true if iRj folse other K mot (R) Nel (mot R) M, rel(M) [] rel(M) mot(rel(M))

R,S ~ mat(R), mat(S)mat (SoR) Sok + 11 fact $mat(s) \cdot mat(R)$ $mat(JdA) = \left\{ \begin{array}{c} fme \\ false \\ false \\ fine \end{array} \right\}$ Id_A 1

Relations from [m] to [n] and $(m \times n)$ -matrices over Booleans provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .

Directed graphs A

Definition 82 A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).

Corollary 84 For every set A, the structure

 $(\operatorname{Rel}(A), \operatorname{I}_A, \circ)$

is a monoid.

Definition 85 For $R \in \text{Rel}(A)$ and $n \in \mathbb{N}$, we let

$$R^{\circ n} = \underbrace{R \circ \cdots \circ R}_{n \text{ times}} \in \operatorname{Rel}(A)$$

be defined as I_A for n = 0, and as $R \circ R^{\circ m}$ for n = m + 1.

Rok: A+>A z(RoR) y iff Jz. zkzkzky If There is a poth of length 2 n The directed graph 2 - Ron There is a path of lengths n in the directed fresh. T

Paths

Proposition 86 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A$, $s R^{\circ n} t$ iff there exists a path of length n in R with source s and target t.

PROOF:

EXERCITE (by induction)

Definition 87 For $R \in Rel(A)$, let

 $\mathbb{R}^{\circ *} = \bigcup \left\{ \mathbb{R}^{\circ n} \in \operatorname{Rel}(\mathbb{A}) \mid n \in \mathbb{N} \right\} = \bigcup_{n \in \mathbb{N}} \mathbb{R}^{\circ n}$.

Corollary 88 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ*} t$ iff there exists a path with sourse s and target t in R.