7w ML, Fro o X, S£3xX s e 5ot

Aololnpt uwaEefXLoﬁg/‘rJl
(c%,?) AJ)C{{M.% [ 4

— one 4%‘,4%7% Disjoint unions

Definition 75 The disjoint union A & B of two sets A and B is the
set

AWB = ({1} xA)U ({2} xB) .

Thus,

Vx.x € (AWB) < (JacA.x=(l,a)) V (IbeB.x=(2,b)).
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Proposition 76 For all finite sets A and B,

L (AWB) = #A+ 4B .

PROOFIDEA:QQ_/A:WL ) Af—gqll"'/om‘k
%:VL / B - {51 ——bn §




> o ,7/1 ndured Fw:;.
Relations (‘7 %&;M¢>

Definition 77 A (binary) relation R from a set A to a set B

R:A—+—B or ReRelA,B) , (4
| i Cottmon.
S BLAxB) (s iarj’/io
RCA XB

Notation 78 One typically writes aR b for (a,b) € R.
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Informal examples:

» Computation.

» Typing.

» Program equivalence.
» Networks.

» Databases.
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Examples:

>

4? .

Empty relation.
D:A—+B

Full relation.
(AxB):A—+B

ldentity (or equality) relation.
IA={(aq,a)]aeA}:A—+A

Integer square root.
R={(mn)|m=n*}:N-+2Z

L{' KZ 2’ / LILZL("Z)
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(a (A X B)b & true)

(alp a’ &< a=a')

(MR, & m=n?)



Internal diagrams
Example: S ©

R=1{(0,0),(0,—1),(0,1),(1,2),(1,1),(2,1) } :N—~Z
s=1{(1,0),(1,2),(2,1),(2,3) }: Z—+~7Z

e\ /[\\

| — 2
T /

L= = 2
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Relational composition

KA-+2B S B—C

: o .91-
M"“f’” nefoht
Sok - A—t=C R3St A=+2C
"

q (SR c @3&&6. akb & bSc
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5’4—0; mma«m@éy‘l%%’ w16
ToS el

Theorem 79 Relational composition is associative and has the
identity relation as neutral element.

» Associativity.
ForallR:A ——B,S:B——C,andT:C—+D, g\laX

(ToS)oR = To(SoR)

» Neutral element. a C[os)oﬂjo(,
4 Forall R: A —+ B,

K‘égg ROIA:R:IBOR U‘ﬁ
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Relations and matrices

Definition 80

1. For positive integers m and n, an (m x n)-matrix M over a
semiring (S, 0,®,1,®) is given by entries M;; € S for all
0<i<mand0<j<n.

men)-mé’mi M @XL)’WWM L
~~7 me«&)amm @‘M)
CL M)V/J ...@ L @ Mv/l

Theorem 81 Matrix multiplication IS associative and has the

identity matrix as neutral element.
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QMQ 5/.703 we q relsh o, r@((m Lm’] *L—?[m]

Whire (1) = $ 04 - o‘(;éu/(
el ™) g <“> M,,









Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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D1irected graphs f‘ A

Definition 82 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).

A £:A—A
}Qoz! A-’("3A
fo o L1 AA
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Corollary 84 For every set A, the structure
( RGI(A) ) IA y © )

IS a monoid.

Definition 85 For R € Rel(A) and n € N, we let

R™ = Ro---oR € Rel(A)

IV

n times

be definedas [, forn =0,andas RoR°™forn =m + 1.
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Paths

Proposition 86 Let (A, R) be a directed graph. For alln € N and
s,t € A, s R°™ t iff there exists a path of length n in R with source s

and target t.

PROOF:

EX’E}QQ_% Cb? voluc [Wo%>
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Definition 87 For R € Rel(A), let

R* = J{R™e€Rel(A) [ neN} = [,y R

neN

Corollary 88 Let (A,R) be a directed graph. For all s,t ¢ A, s R°* t
Iff there exists a path with sourse s and target t in R.
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