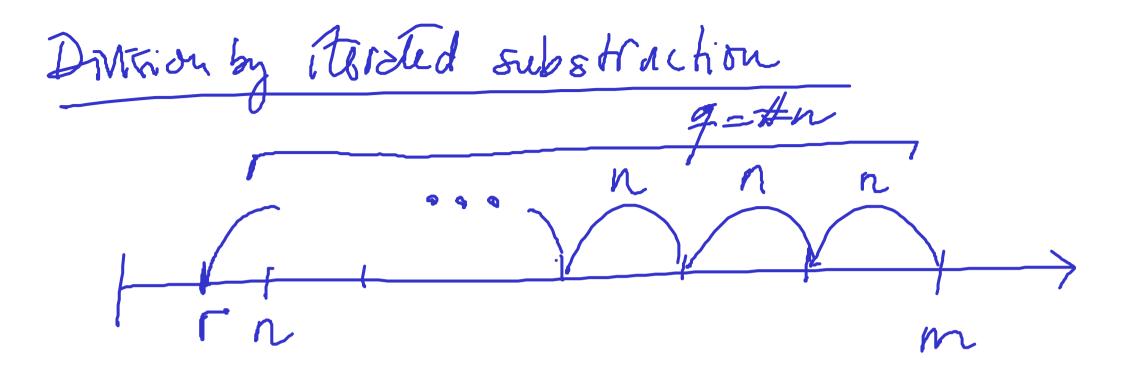
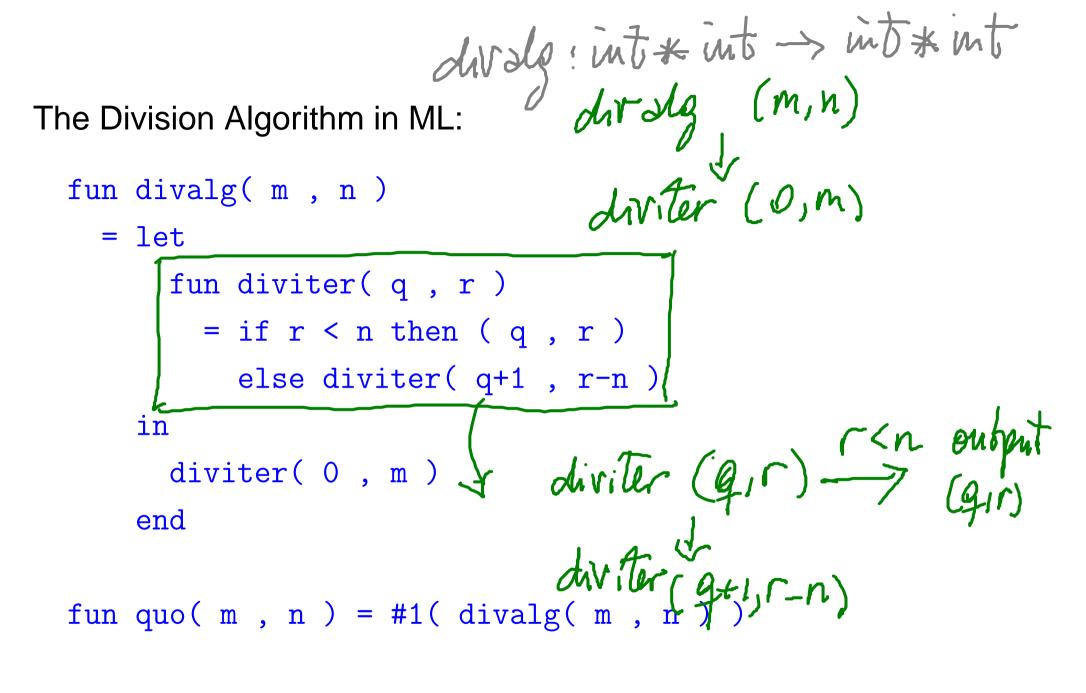
The division theorem and algorithm

Theorem 38 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 39 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).





fun rem(m, n) = #2(divalg(m, n))

 $(0,m) \xrightarrow{m < n} (0,m)$ (1, m-n) $\xrightarrow{m-n \leq n} (1, m-n)$ $(2, m-2n) \longrightarrow (2, m-2n)$ $(i, m-in) \longrightarrow (i, m-in)$

terminetes n by contraction

 $(q_ir) \xrightarrow{r < n} (q_ir)$ dwster $f(x,y) \equiv (m = x \cdot n + y)$ $m = q \cdot n + r$ $m = q \cdot n + r$ $m = (q + s) \cdot n + (r - n)$ $m = q \cdot n + r$ $P(q,r) \implies P(q_H,r_n)$ P(0,m) holds $\equiv (m=0.n+m)$ V

Theorem 40 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF: Establishes the existence part of the division theorem. Let us show such a port is unique. Assume (g1,r1) s.t OSr1 < n and m=g1. N+r1 Assume (g_2, r_2) s.t. $0 \le r_2 \le 3md$ $M = g_2 \cdot n + r_2$ We show $q_1 = q_2$ and $r_1 = r_2$.

 $\theta \leq r_i < r_i$ $m = q_i \cdot n + r_i$ $m = g_2 \cdot n + r_2$ OS12KN $\Rightarrow (q_1 - q_2) \cdot n + (r_1 - r_2) = 0 (\bigstar)$ Cose 1: $r_1 \ge r_2 \Longrightarrow r_1 - r_2 \ge 0$ $\Rightarrow r_1 - r_2 \le n$ $r_1 - r_2 \le n$ $r_1 - r_2 = (q_2 - q_1) \cdot n \le n$ $q_2 - q_1 = 0$ Cese 2: 1271 9. - 92

 $= m - q_1 \cdot n = r_1$ $- g_1 = g_2$ $m - g_2 \cdot n = f_2$

Checking the congruence of numbers is decidable **Proposition 41** Let m be a positive integer. For all integers k and l,

 $k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m)$ PROOF: Assume kard larbitrary integers. (⇒) Assume k=l(modm); That is, I inti k-l=im. By The divition Thus l= g·m+r for unique 9 & 05r<m. Then, rem(lim) k=ltim=(gti)·mtr with 05rcm Hence r = rem(k, m). -91 - 5 by unique sof removed removed removed removed <math>removed removed removed removed removed <math>removed removed removed removed <math>removed removed removed removed removed <math>removed removed removed removed removed removed <math>removed removed removed removed removed removed removed removed removed <math>removed removed remove

 (\leq) Assume New (R,m) = rem(l,m) $R-l = guo(R, m) \cdot m + rem(R, m)$ $-\left(g_{W}\left(l,m\right),m+rem\left(l,m\right)\right)$ $= \left[g_{uv}(k,m) - g_{uv}(l,m) \right] \cdot m$

 \square

Corollary 42 Let m be a positive integer.

1. For every natural number n,

$$n \equiv rem(n, m) \pmod{m} .$$

$$fem(n, m) = rem(rem(n, m), m)$$

$$\int_{l}$$

$$Exercise$$

PROOF:

Corollary 42 Let m be a positive integer.

1. For every natural number n,

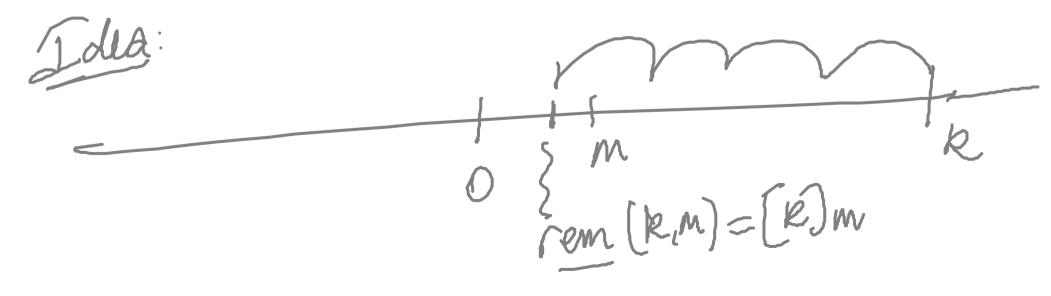
```
n \equiv \operatorname{rem}(n,m) \pmod{m} .
```

2. For every integer k there exists a unique integer $[k]_{\mathfrak{m}}$ such that

 $0 \leq [k]_{\mathfrak{m}} < \mathfrak{m} \text{ and } k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

modun

PROOF:



mod M.

R+m k+2m 05 [k]m (k < 0)k+]k].m 20 $\operatorname{rem}(k \neq 1 \times 1 \times 1 \cdot m, m) = [k]_m \equiv k$

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_m$$
 : 0, 1, ..., m-1.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

Booleons or and $(\overline{Z}_2, \frac{1}{2}, \frac{1}{2})$

Example 44 The addition and multiplication tables for \mathbb{Z}_4 are:

$+_{4}$	0	1	2	3	•_	4	0	1	2	3
0	0	1	2	3	C	3	0	0	0	0
1	1	2	3	0	1	1	0	1	2	3
2	2	3	0	1	2	2	0	2	0	2
3	3	0	1	2	3	3	0	3	2	1

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> inverse					
0	0	0						
1	3	1	1					
2	2	2						
3	1	3	3					

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 45 The addition and multiplication tables for \mathbb{Z}_5 are:

$+_{5}$	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	$\left(\begin{array}{c} \\ \end{array} \right)$)2	3	4
2						2	0	2	4) 3
3	3	4	0	1	2			3			
4	4	0	1	2	3	4	0	4	3	2(

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> <i>inverse</i>
0	0	0	
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.