Simple and composite statements

A statement is <u>simple</u> (or <u>atomic</u>) when it cannot be broken into other statements, and it is <u>composite</u> when it is built by using several (simple or composite statements) connected by *logical* expressions (e.g., if...then...; ...implies ...; ...if and only if ...; ...and...; either ...or ...; it is not the case that ...; for all ...; there exists ...; etc.)

Examples:

'2 is a prime number'

'for all integers m and n, if $m \cdot n$ is even then either n or m are even'

* Typo in printed notes

Implication

Theorems can usually be written in the form

if a collection of assumptions holds,then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of *hypotheses* \implies some *conclusion*

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

The main proof strategy for implication:

To prove a goal of the form

 $P \implies Q$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Proof pattern:

In order to prove that

$P \implies Q$

-21 -

1. Write: Assume P.

2. Show that Q logically follows.

Scratch work:

-22 -

Proposition 8 If m and n are odd integers, then so is $m \cdot n$. Compound implication **PROOF:** (mondnodd integers => m.nodd) V ASSume mond nore odd integers. We will Show That men is odd. By assumption, mis of The form 2k+1 for some integer kand n is of The form 2k+1 for some integer L; Thus, men=(2k+1). (2l+1)= ...

- 23

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

the *contrapositive* of 'P implies Q' is 'not Q implies not P' In symbols, $P \Rightarrow Q$ is equivalent to $\neg Q \Rightarrow \overline{\gamma}P$

-24 ----

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Since

the *contrapositive* of 'P implies Q' is 'not Q implies not P'

we obtain the following:

Proof pattern:

In order to prove that

$P \implies Q$

- Write: We prove the contrapositive; that is, ... and state the contrapositive.
- **2.** Write: Assume 'the negation of Q'.
- 3. Show that 'the negation of P' logically follows.

Scratch work:

Definition 9 A real number is:

- rational if it is of the form m/n for a pair of integers m and n; otherwise it is irrational.
- ▶ positive if it is greater than 0, and negative if it is smaller than 0.
- nonnegative if it is greater than or equal 0, and nonpositive if it is smaller than or equal 0.
- ▶ <u>natural</u> if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} .

PROOF: Assame & 15 & positive real number. Assume & B contrational; That is x is not of the form m/n for integers mand or. We will prove the contrapositive; That is, Jz rational mplies z rational. Assume Jz is rational.

- 28 —

• • •

 \square

Logical Deduction – Modus Ponens –

A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and P \implies Q, the statement Q follows.

or, in other words,

If P and P \implies Q hold then so does Q.

or, in symbols,

$$\begin{array}{ccc} P & P \implies Q \\ \hline Q \end{array}$$

-29 -

The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P. Once this is done, by Modus Ponens, one can conclude Q and so further assume it. **Theorem 11** Let P_1 , P_2 , and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

PROOF: Assumptions (1) P.P. P3 statements Gool Γঽ (2) $P_1 \Rightarrow P_2$ (4) k(2), by MP, we have (3) $P_2 \Rightarrow P_3$ (5) P_2 . (4) P_1 (5) k(3), by MP, we have Pz

Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q

P iff Q

or, in symbols,

Proof pattern: In order to prove that $P \iff Q$

1. Write: (\Longrightarrow) and give a proof of $P \implies Q$.

2. Write: (\Leftarrow) and give a proof of $Q \implies P$.

Proposition 12 Suppose that n is an integer. Then, n is even iff n^2 is even.

PROOF: Assume n is on integer. (\Rightarrow) We prove: n even \Rightarrow n^2 even. So further assume n is even; that is, n = 2k for some integer k. Then, $n^2 = (2k)^2 = 2(2k^2)$ which is of the form 2l (for l=2k²) and 80 (=) We prore: n² even => n even. Assume n² even: That is <u>n² 2 & for Some integerk</u>. by establishing the contrapositive; That is even.

 $n \text{ odd} \Rightarrow n^2 \text{ odd}.$ But This holds as a corollary of m and n odd => nn. n odd which we have already shown

Divisibility

* predicate

Definition 13 Let d and n be integers. We say that d divides n, and write d | n, whenever there is an integer k such that $n = k \cdot d$.

Example 14 The statement **2** 4 is true, while 4 | 2 is not.

Definition 15 Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m, and write $a \equiv b \pmod{m}$, whenever $m \mid (a - b)$.

Example 16
1.
$$18 \equiv 2 \pmod{4}$$

2. $2 \equiv -2 \pmod{4}$

3. 18 ≡ −2 (mod 4)