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Sets
Objective

To introduce the basics of the theory of sets and some of its
applications.

Complementary reading:

◮ Chapters 1, 30, and 31 of How to Think Like a Mathematician
by K. Houston.

◮ Chapters 4.1 and 7 of Mathematics for Computer Science by
E. Lehman, F. T. Leighton, and A. R. Meyer.

◮ Chapters 1.3, 1.4, 4, 5, and 7 of How to Prove it by
D. J. Velleman.
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Sets
adapted from Section 1.1 of Sets for Mathematics

by F.W. Lawvere and R. Rosebrugh

An abstract set is supposed to have elements, each of which has no
structure, and is itself supposed to have no internal structure, except
that the elements can be distinguished as equal or unequal, and to
have no external structure except for the number of elements. There
are sets of all possible sizes, including finite and infinite sizes.
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It has been said that a set is like a mental “bag of dots”, except of
course that the bag has no shape; thus,

?> =<
89 :;
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

?> =<89 :;•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

?> =<89 :;• • • • • • • • • •

for other considerations.
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Set Theory

Set Theorya is the branch of mathematical logic that studies axiom
systems for the notion of abstract set as based on a membership
predicate (recall page 178). As we will see (on page 296), care
must be taken in such endeavour.

Set Theory aims at providing foundations for mathematics. There
are however other approaches, as Category Theory and Type
Theory, that also play an important role in Computer Science.

a(for which you may start by consulting the book Naive Set Theory by

P.Halmos)
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A widely used set theory is ZFC: Zermelo-Fraenkel Set Theory
with Choice. It embodies postulates of: extensionality (page 291);
separation [aka restricted comprehension, subset, or
specification] (page 294); powerset (page 300); pairing (page 313);
union (page 326); replacement; infinity; foundation [aka regularity];
and choice.

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ ( ∀ x. x ∈ A ⇐⇒ x ∈ B )

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}
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Subsets and supersets

Definition 80 For sets A and B, A is said to be a subset of B,
written A ⊆ B, and B is said to be a superset of A, written B ⊇ A,
whenever the statement

∀ x. x ∈ A =⇒ x ∈ B

holds.

Example:

{0} ⊆ {0, 1} ⊇ {1}

Notation 81 The proper subset notation A ⊂ B stands for
(A ⊆ B & A 6= B). Analogously, the proper superset notation
B ⊃ A stands for (B ⊇ A & B 6= A).
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Go to Workout 21
on page 437
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

— 294 —

Version of February 4, 2014

Set comprehension

The set whose existence is postulated by the separation principle
for a set A and a property P typically denoted

{ x ∈ A | P(x) } .

(Recall the discussion on set comprehension on page 181.)

Thus, the statement (†) on page 181 follows.
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Russell ′s paradox

The separation principle does not allow us to consider the class of
those R such that R 6∈ R as a set (and, btw, the same goes for the
class of all sets). This is not a bug, but a feature!
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Empty set

The set whose existence is postulated by the separation principle
for a set A and the absurd property false typically denoted

∅ or { } .

Its defining statement is

∀ x. x 6∈ ∅

or, equivalently, by

¬(∃ x. x ∈ ∅) .
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Go to Workout 22
on page 438
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0
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Powerset axiom

For any set, there is a set consisting of all its subsets.

The set of all subsets of a set U whose existence is postulated by
the powerset axiom is typically denoted

P(U) .

Thus,

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .
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Hasse diagramsa

Example: P
(
{x, y, z}

)

aFrom http://en.wikipedia.org/wiki/Powerset; see also

http://en.wikipedia.org/wiki/Hasse_diagram.
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Proposition 82 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA:
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Venn diagramsa

aFrom http://en.wikipedia.org/wiki/Union_(set_theory) and

http://en.wikipedia.org/wiki/Intersection_(set_theory); see also

http://en.wikipedia.org/wiki/Venn_diagram.
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Union Intersection

Complement
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The powerset Boolean algebra

( P(U) , ∅ , U , ∪ , ∩ , (·)c )

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B }

A ∩ B = { x ∈ U | x ∈ A & x ∈ B }

Ac = { x ∈ U | ¬(x ∈ A) }
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◮ The union operation ∪ and the intersection operation ∩ are
associative, commutative, and idempotent.
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◮ The empty set ∅ is a neutral element for ∪ and the universal
set U is a neutral element for ∩.
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◮ The empty set ∅ is an annihilator for ∩ and the universal set U
is an annihilator for ∪.
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◮ With respect to each other, the union operation ∪ and the
intersection operation ∩ are absorptive and distributive.
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◮ The complement operation (·)c satisfies complementation laws.
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Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ &

(·)c ¬(·)
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Go to Workout 23
on page 439
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Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

The set whose existence is postulated by the pairing axiom for a

and b is typically denoted by

{a , b } .

Thus, the statement

∀x. x ∈ {a, b} ⇐⇒ (x = a ∨ x = b)

holds, and we have that:

# {a, b} = 1 ⇐⇒ a = b and # {a, b} = 2 ⇐⇒ a 6= b .
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Singletons

For every a, the pairing axiom provides the set {a, a} which is
abbreviated as

{a } ,

and referred to as a singleton.

NB

# {a } = 1
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Examples:

∅ ⊂ { ∅ } ⊂ { ∅ , { ∅ } } ⊃ { { ∅ } } ⊃ ∅

◮ # { ∅ } = 1

◮ # { { ∅ } } = 1

◮ #{ ∅ , { ∅ } } = 2

NB

{ ∅ } ∈ { { ∅ } } , { ∅ } 6⊆ { { ∅ } } , { { ∅ } } 6⊆ { ∅ }
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Ordered pairing

For every pair a and b, three applications of the pairing axiom
provide the set

{
{a } , {a, b }

}
which is typically abbreviated

as

〈a, b〉 ,

and referred to as an ordered pair .
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Proposition 83 (Fundamental property of ordered pairing)
For all a, b, x, y,

〈a, b〉 = 〈x, y〉 ⇐⇒
(
a = x & b = y

)
.

PROOF:
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Products

The product A× B of two sets A and B is the set

A× B =
{
x | ∃a ∈ A,b ∈ B. x = (a, b)

}

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 & b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A,b ∈ B. x = (a, b) .
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More generally, for a fixed natural number n and sets A1, . . . , An, we
have

∏n
i=1 Ai = A1 × · · · ×An

=
{
x | ∃a1 ∈ A1, . . . , an ∈ An. x = (a1, . . . , an)

}

where

∀a1, a
′
1 ∈ A1, . . . , an, a

′
n ∈ An.

(a1, . . . , an) = (a ′
1, . . . , a

′
n) ⇐⇒ (a1 = a ′

1 & · · · & an = a ′
n) .

NB Cunningly enough, the definition is such that
∏0

i=1 Ai = { () }.

Notation 84 For a natural number n and a set A, one typically
writes An for

∏n
i=1 A.
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Proposition 85 For all finite sets A and B,

# (A× B) = #A ·#B .

PROOF IDEA:
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Go to Workout 24
on page 446
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Big unions and intersections

Definition 86 Let U be a set. For a collection of sets F ⊆ P(U),

◮ let the big union (relative to U) be defined as
⋃
F = { x ∈ U | ∃A ∈ F. x ∈ A } ,

and

◮ let the big intersection (relative to U) be defined as
⋂
F = { x ∈ U | ∀A ∈ F. x ∈ A } .
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Examples: For A,A1, A2 ∈ P(U),

⋃ ∅ = ∅ ⋂ ∅ = U
⋃

{A} = A
⋂

{A} = A
⋃

{A1, A2} = A1 ∪A2

⋂
{A1, A2} = A1 ∩A2

⋃
{A,A1, A2} = A ∪A1 ∪A2

⋂
{A,A1, A2} = A ∩A1 ∩A2
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Theorem 87 Let

F =
{

S ⊆ R (0 ∈ S) &
(
∀x ∈ R. x ∈ S =⇒ (n+ 1) ∈ S

) }
.

Then, (i) N ∈ F and (ii) N ⊆ ⋂
F. Hence,

⋂
F = N.

NB This result is typically interpreted as stating that:

N is the least set of numbers containing 0 and closed under
taking successors.
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PROOF:
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Union axiom

Every collection of sets has a union.

The set whose existence is postulated by the union axiom for a
collection F is typically denoted

⋃
F

and, in the case F = {A,B}, abbreviated to

A ∪ B .

Thus,

x ∈ ⋃
F ⇐⇒ ∃X ∈ F. x ∈ X ,

and hence

x ∈ (A ∪ B) ⇐⇒ (x ∈ A) ∨ (x ∈ B) .
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Using the separation and union axioms, for every collection F,
consider the set

{
x ∈ ⋃

F | ∀X ∈ F. x ∈ X
}

.

For non-empty F this set is denoted
⋂

F

because, in this case,

∀x. x ∈ ⋂
F ⇐⇒

(
∀X ∈ F. x ∈ X

)
.

In particular, for F = {A,B}, this is abbreviated to

A ∩ B

with defining property

∀ x. x ∈ (A ∩ B) ⇐⇒ (x ∈ A) & (x ∈ B) .
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Go to Workout 25
on page 448
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Tagging

The construction

{ ℓ }×A =
{
(ℓ, a) | a ∈ A

}

provides copies of A, as tagged by labels ℓ.

Indeed, note that

∀y ∈
(
{ ℓ }×A

)
.∃! x ∈ A. y = (ℓ, x) ,

and that { ℓ1 }×A1 = { ℓ2 }×A2 ⇐⇒ (ℓ1 = ℓ2) & (A1 = A2) so that

{ ℓ1 }×A = { ℓ2 }×A ⇐⇒ ℓ1 = ℓ2 .
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Disjoint unions

Definition 88 The disjoint union A ⊎ B of two sets A and B is the
set

A ⊎ B =
(
{1}×A

)
∪
(
{2}× B

)
.

Thus,

∀ x. x ∈ (A ⊎ B) ⇐⇒
(
∃a ∈ A. x = (1, a)

)
∨

(
∃b ∈ B. x = (2, b)

)
.
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More generally, for a fixed natural number n and sets A1, . . . , An, we
have

⊎n
i=1Ai = A1 ⊎ · · · ⊎An

=
(
{1}×A1

)
∪ · · · ∪

(
{n}×An

)

NB Cunningly enough, the definition is such that
⊎0

i=1 Ai = ∅.

Notation 89 For a natural number n and a set A, one typically
writes n ·A for

⊎n
i=1A.
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Proposition 90 For all finite sets A and B,

# (A ⊎ B) = #A+#B .

PROOF IDEA:
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Go to Workout 26
on page 451
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Workout 21
from page 293

1. Write an ML function

subset: ’’a list * ’’a list -> bool

such that for every list xs representing a finite set X and every
list ys representing a finite set Y, subset(xs,ys)=true iff X ⊆ Y.

2. Prove the following statements:

(a) ∀ sets A.A ⊆ A.

(b) ∀ sets A,B,C. (A ⊆ B & B ⊆ C) =⇒ A ⊆ C.

(c) ∀ sets A. (A ⊆ B & B ⊆ A) ⇐⇒ A = B.
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Workout 22
from page 298

Prove the following statements:

1. ∀ set S. ∅ ⊆ S.

2. ∀ set S. (∀x. x 6∈ S) ⇐⇒ S = ∅.
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Workout 23
from page 312

1. Referring to the definitions on pages 183 and 184, show that
CD(m,n) = D(m) ∩D(n) for all natural numbers m and n.

2. Find the union and intersection of:

(a) {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7};

(b) {x ∈ R | x > 7} and {x ∈ N | x > 5}.
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3. Write ML functions

union: ’a list * ’a list -> ’a list

intersection: ’’a list * ’’a list -> ’a list

such that for every list xs representing a finite set X and every
list ys representing a finite set Y, the lists union(xs,ys) and
intersection(xs,ys) respectively represent the finite sets X∪Y
and X ∩ Y.

Use these functions to check your answer to the first part of the
previous item.

4. Give an explicit description of P
(
P(P(∅))

)
, and draw its Hasse

diagram.
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5. Write an ML function

powerset: ’a list -> ’a list list

such that for every list as representing a finite set A, the list of
lists powerset(as) represents the finite set P(A).

6. Establish the laws of the powerset Boolean algebra.

7. Either prove or disprove that, for all sets A and B,

(a) A ⊆ B =⇒ P(A) ⊆ P(B),

(b) P(A ∪ B) ⊆ P(A) ∪ P(B),

(c) P(A) ∪ P(B) ⊆ P(A ∪ B).

(d) P(A ∩ B) ⊆ P(A) ∩ P(B),

(e) P(A) ∩ P(B) ⊆ P(A ∩ B).
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8. Let U be a set. For all A,B ∈ P(U) prove that the following
statements are equivalent.

(a) A ∪ B = B.

(b) A ⊆ B.

(c) A ∩ B = A.

(d) Bc ⊆ Ac.

9. Let U be a set. For all A,B ∈ P(U) prove that

(a) Ac = B ⇐⇒ (A ∪ B = U & A ∩ B = ∅),
(b) (Ac)c = A, and

(c) the De Morgan’s laws:

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc .
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10. Draw Venn diagrams for the following constructions on sets.

(a) Difference:

A \ B = { x ∈ A | x 6∈ B }

(b) Symmetric difference:

A △ B = (A \ B) ∪ (B \A)
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If you like this kind of stuff, push on.

11. Let U be a set. Prove that, for all A,B ∈ P(U),

(a) A ⊆ B =⇒
(
A \ B = ∅ & A △ B = B \A

)
.

(b) A ∩ B = ∅ =⇒ A △ B = A ∪ B,

(c) (A △ B) ∩ (A ∩ B) = ∅ & (A △ B) ∪ (A ∩ B) = A ∪ B,

and establish as corollaries that

(d) Ac = U △ A.

(e) A ∪ B = (A △ B) △ (A ∩ B),

thereby expressing complements and unions in terms of
symmetric difference and intersections.
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12. The purpose of this exercise is to show that, for a set U, the
structure

(
P(U), ∅,△, U,∩

)
is a commutative ring.

(a) Prove that (P(U), ∅,△) is a commutative group; that is, a
commutative monoid (refer to page 151) in which every
element has an inverse (refer to page 156).

(b) Prove that P(U) with additive structure (∅,△) and
multiplicative structure (U,∩) is a commutative semiring.
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Workout 24
from page 321

1. Find the product of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Write an ML function

product: ’a list * ’b list -> ( ’a * ’b ) list

such that for every list as representing a finite set A and every
list bs representing a finite set B, the list of pairs
product(as,bs) represents the product set A× B.

Use this function to check your answer to the previous item.
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3. For sets A,B,C,D, either prove or disprove the following
statements.

(a) (A ⊆ B & C ⊆ D) =⇒ A× C ⊆ B×D.

(b) (A ∪ C)× (B ∪D) ⊆ (A× B) ∪ (C×D).

(c) (A× B) ∪ (C×D) ⊆ (A ∪ C)× (B ∪D).

(d) A× (B ∪D) ⊆ (A× B) ∪ (A×D).

(e) (A× B) ∪ (A×D) ⊆ A× (B ∪D).

What happens with the above when A ∩ C = ∅ and/or
B ∩D = ∅?
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Workout 25
from page 328

1. Let I = {2, 3, 4, 5}, and for each i ∈ I let Ai = {i, i+ 1, i− 1, 2 · i}.
(a) List the elements of all the sets Ai for i ∈ I.

(b) Let {Ai | i ∈ I} stand for {A2, A3, A4, A5}.

Find
⋃
{Ai | i ∈ I} and

⋂
{Ai | i ∈ I}.
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2. Write ML functions

bigunion: ’a list list -> ’a list

bigintersection: ’a list list -> ’a list

such that for every list of lists as representing a finite set of
finite sets A, the lists bigunion(as) and bigintersection(as)

respectively represent the finite sets
⋃

X and
⋂
X.

Use these functions to check your answer to the previous item.

3. For F ⊆ P(A), let U =
{
X ⊆ A | ∀S ∈ F. S ⊆ X

}
⊆ P(A).

Prove that
⋃

F =
⋂

U.

Analogously, define L ⊆ P(A) such that
⋂

F =
⋃

L. Also
prove this statement.

— 449 —

Version of February 4, 2014

NB For intuition when tackling the following exercises it might

help considering the case of finite collections first.

4. Prove that, for all collections F, it holds that

∀ set U.
⋃
F ⊆ U ⇐⇒

(
∀X ∈ F. X ⊆ U

)
.

State and prove the analogous property for intersections of big
intersections of non-empty collections.

5. Prove that for all collections F1 and F2,
(⋃

F1

)
∪
(⋃

F2

)
=

⋃
(F1 ∪ F2) .

State and prove the analogous property for intersections of
non-empty collections.
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Workout 26
from page 333

1. Find the disjoint union of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Let

datatype (’a,’b) sum = one of ’a | two of ’b .

Write an ML function

dunion: ’a list * ’b list -> (’a ,’b) sum list

such that for every list as representing a finite set A and every
list bs representing a finite set B, the list of tagged elements
dunion(as,bs) represents the disjoint union A ⊎ B.

Use this function to check your answer to the previous item.
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3. Prove or disprove the following statements for all sets A, B, C,
D:

(a) (A ⊆ B & C ⊆ D) =⇒ A ⊎ C ⊆ B ⊎D,

(b) (A ∪ B) ⊎ C ⊆ (A ⊎ C) ∪ (B ⊎ C),

(c) (A ⊎ C) ∪ (B ⊎ C) ⊆ (A ∪ B) ⊎ C,

(d) (A ∩ B) ⊎ C ⊆ (A ⊎ C) ∩ (B ⊎ C),

(e) (A ⊎ C) ∩ (B ⊎ C) ⊆ (A ∩ B) ⊎ C.
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