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Lecture plan

1. Preliminaries (pages 4–10) and introduction (pages 11–37).

2. On implication (pages 38–56) and bi-implication
(pages 57–67).

3. On universal quantification (pages 68–75) and conjunction
(pages 76–83).

4. On existential quantification (pages 84–97).

5. On disjunction (pages 98–109) and a little arithmetic
(pages 110–125).
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6. On negation (pages 126–145).

7. On number systems (pages 146–157).

8. On the division theorem and algorithm (pages 158–168) and
modular arithmetic (pages 169–175).

9. On sets (pages 176–181), the greatest common divisor
(pages 182–189), and Euclid’s algorithm (pages 190–211) and
theorem (pages 212–217).

10. On the Extended Euclid’s Algorithm (pages 218–231) and the
Diffie-Hellman cryptographic method (pages 232–236).
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11. On mathematical induction: the Principle of Induction
(pages 237–258), the Principle of Induction from a basis
(pages 259–263), and the Principle of Strong Induction
from a basis (pages 263–285).
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A Zen story
from the Introduction of

Mathematics Made Difficult by C.E. Linderholme

One of the great Zen masters had an eager disciple who never lost
an opportunity to catch whatever pearls of wisdom might drop from
the master’s lips, and who followed him about constantly. One day,
deferentially opening an iron gate for the old man, the disciple asked,
‘How may I attain enlightenment?’ The ancient sage, though with-
ered and feeble, could be quick, and he deftly caused the heavy
gate to shut on the pupil’s leg, breaking it.

— 4 —

What are we up to ?

◮ Learn to read and write, and work with, mathematical
arguments.

◮ Doing some basic discrete mathematics.

◮ Getting a taste of computer science applications.
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What is it that we do ?

In general:

Mathematical models and methods to analyse problems that
arise in computer science.

In particular:

Make and study mathematical constructions by means of
definitions and theorems. We aim at understanding their
properties and limitations.
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Application areas

algorithmics - compilers - computability - computer aided verification
computer algebra - complexity - cryptography - databases
digital circuits - discrete probability - model checking - network
routing - program correctness - programming languages - security
semantics - type systems
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Preliminaries

Complementary reading:

◮ Preface and Part I of How to Think Like a Mathematician by
K. Houston.
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Some friendly advice
by K. Houston from the Preface of
How to Think Like a Mathematician

• It’s up to you. • Be active.

• Think for yourself. • Question everything.

• Observe. • Prepare to be wrong.

• Seek to understand. • Develop your intuition.

• Collaborate. • Reflect.
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Study skills
Part I of How to Think Like a Mathematician

by K. Houston

◮ Reading mathematics

◮ Writing mathematics

◮ How to solve problems
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Mathematical argument

Topics

Proofs in practice. Mathematical jargon: statement, predicate,
theorem, proposition, lemma, corollary, conjecture, proof, logic,
axiom, definition. Mathematical statements: implication,
bi-implication, universal quantification, conjunction, existential
quantification, disjunction, negation. Logical deduction: proof
strategies and patterns, scratch work, logical equivalences.
Proof by contradiction. Divisibility and congruences. Fermat’s
Little Theorem.
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Complementary reading:

◮ Parts II, IV, and V of How to Think Like a Mathematician by
K. Houston.

◮ Chapters 1 and 8 of Mathematics for Computer Science by
E. Lehman, F. T. Leighton, and A. R. Meyer.

⋆ Chapter 3 of How to Prove it by D. J. Velleman.

⋆ Chapter II of The Higher Arithmetic by H. Davenport.
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Objectives

◮ To develop techniques for analysing and understanding
mathematical statements.

◮ To be able to present logical arguments that establish
mathematical statements in the form of clear proofs.

◮ To prove Fermat’s Little Theorem, a basic result in the
theory of numbers that has many applications in
computer science; and that, in passing, will allow
you to solve the following . . .
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Puzzle

5 pirates have accumulated a tower of n cubes each of which con-
sists of n3 golden dice, for an unknown (but presumably large) num-
ber n. This treasure is put on a table around which they sit on chairs
numbered from 0 to 4, and they are to split it by simultaneously tak-
ing a die each with every tick of the clock provided that five or more
dice are available on the table. At the end of this process there
will be r remaining dice which will go to the pirate sitting on the chair
numbered r. What chair should a pirate sit on to maximise his gain?
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Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuously enough, but it is in fact full of baggage.
For instance, it presupposes that you know:

◮ what a statement is;

◮ what the integers (. . . ,−1, 0, 1, . . .) are, and that amongst them
there is a class of odd ones (. . . ,−3,−1, 1, 3, . . .);

◮ what the product of two integers is, and that this is in turn an
integer.
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More precisely put, we may write:

If m and n are odd integers then so is m · n.

which further presupposes that you know:

◮ what variables are;

◮ what

if . . . then . . .

statements are, and how one goes about proving them;

◮ that the symbol “·” is commonly used to denote the product
operation.
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Even more precisely, we should write

For all integers m and n, if m and n are odd then so
is m · n.

which now additionally presupposes that you know:

◮ what

for all . . .

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement,
we are assuming quite a lot of mathematical jargon that one needs
to learn and practice with to make it a useful, and in fact very pow-
erful, tool.
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Some mathematical jargon

Statement

A sentence that is either true of false — but not both.

Example 1
‘ei π + 1 = 0’

Non-example

‘This statement is false’
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THEOREM OF THE DAY
Euler’s Identity With τ and e the mathematical constants
τ = 2π = 6.2831853071 7958647692 5286766559 0057683943 3879875021 1641949889 1846156328 1257241799 7256069650 6842341359 . . .

and
e = 2.7182818284 5904523536 0287471352 6624977572 4709369995 9574966967 6277240766 3035354759 4571382178 5251664274 . . .

(the first 100 places of decimal being given), and using i to denote
√−1, we have

eiτ/2 + 1 = 0.

Squaring both sides of eiτ/2 = −1 gives eiτ = 1, encoding the defining fact that τ radians measures one full circumference. The calculation can
be confirmed explicitly using the evaluation of ez, for any complex number z, as an infinite sum: ez = 1 + z + z2/2! + z3/3! + z4/4! + . . .. The

even powers of i =
√−1 alternate between 1 and −1, while the odd powers alternate between i and −i, so we get two separate sums, one with

i’s (the imaginary part) and one without (the real part). Both converge rapidly as shown in the two plots above: the real part to 1, the imaginary
to 0. In the limit equality is attained, eiτ = 1 + 0 × i, whence eτi = 1. The value of eiτ/2 may be confirmed in the same way.

Combining as it does the six most fundamental constants of mathematics: 0, 1, 2, i, τ and e, the identity has an air of magic.
J.H. Conway, in The Book of Numbers, traces the identity to Leonhard Euler’s 1748 Introductio; certainly Euler deserves
credit for the much more general formula eiθ = cos θ + i sin θ, from which the identity follows using θ = τ/2 radians (180◦).
Web link: fermatslasttheorem.blogspot.com/2006/02/eulers-identity.html

Further reading: Dr Euler’s Fabulous Formula: Cures Many Mathematical Ills, by Paul J. Nahin, Princeton University Press, 2006

From www.theoremoftheday.org by Robin Whitty. This file hosted by London South Bank University
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Predicate

A statement whose truth depends on the value of one
or more variables.

Example 2

1. ‘ei x = cos x+ i sin x’

2. ‘the function f is differentiable’
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Theorem
A very important true statement.

Proposition
A less important but nonetheless interesting true statement.

Lemma
A true statement used in proving other true statements.

Corollary
A true statement that is a simple deduction from a theorem
or proposition.

Example 3

1. Fermat’s Last Theorem

2. The Pumping Lemma
— 21 —

THEOREM OF THE DAY
Fermat’s Last Theorem If x, y, z and n are integers satisfying

xn + yn = zn,
then either n ≤ 2 or xyz = 0.

It is easy to see that we can assume that all the integers in the theorem are positive. So the following is a legitimate, but totally different, way

of asserting the theorem: we take a ball at random from Urn A; then replace it and take a 2nd ball at random. Do the same for Urn B. The

probability that both A balls are blue, for the urns shown here, is 5
7
× 5

7
. The probability that both B balls are the same colour (both blue or both

red) is (4
7
)2 + (3

7
)2. Now the Pythagorean triple 52 = 32 + 42 tells us that the probabilities are equal: 25

49
= 9

49
+ 16

49
. What if we choose n > 2 balls

with replacement? Can we again fill each of the urns with N balls, red and blue, so that taking n with replacement will give equal probabilities?

Fermat’s Last Theorem says: only in the trivial case where all the balls in Urn A are blue (which includes, vacuously, the possibility that N = 0.)

Another, much more profound restatement: if an + bn, for n > 2 and positive integers a and b, is again an n-th power of an integer then the

elliptic curve y2 = x(x − an)(x + bn), known as the Frey curve, cannot be modular (is not a rational map of a modular curve). So it is enough to

prove the Taniyama-Shimura-Weil conjecture: all rational elliptic curves are modular.

Fermat’s innocent statement was famously left unproved when he died in 1665 and was the last of his unproved ‘theorems’ to
be settled true or false, hence the name. The non-modularity of the Frey curve was established in the 1980s by the successive
efforts of Gerhard Frey, Jean-Pierre Serre and Ken Ribet. The Taniyama-Shimura-Weil conjecture was at the time thought to be
‘inaccessible’ but the technical virtuosity (not to mention the courage and stamina) of Andrew Wiles resolved the ‘semistable’
case, which was enough to settle Fermat’s assertion. His work was extended to a full proof of Taniyama-Shimura-Weil during
the late 90s by Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor.

Web link: math.stanford.edu/∼lekheng/flt/kleiner.pdf

Further reading: Fermat’s Last Theorem by Simon Singh, Fourth Estate Ltd, London, 1997.

Created by Robin Whitty for www.theoremoftheday.org
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THEOREM OF THE DAY
The Pumping Lemma Let L be a regular language. Then there is a positive integer p such that any
word w ∈ L of length exceeding p can be expressed as w = xyz, |y| > 0, |xy| ≤ p, such that, for all i ≥ 0,
xyiz is also a word of L.

Regular languages over an alphabet Σ (e.g. {0, 1}) are precisely those strings of letters which are ‘recognised’ by some deterministic finite

automaton (DFA) whose edges are labelled from Σ. Above left, such a DFA is shown, which recognises the language consisting of all positive

multiples of 7, written in base two. The number 95 × 7 = 665 = 29 + 27 + 24 + 23 + 20 is expressed in base 2 as 1010011001. Together with

any leading zeros, these digits, read left to right, will cause the edges of the DFA to be traversed from the initial state (heavy vertical arrow) to

an accepting state (coincidentally the same state, marked with a double circle), as shown in the table below the DFA. Notice that the bracketed

part of the table corresponds to a cycle in the DFA and this may occur zero or more times without affecting the string’s recognition. This is the

idea behind the pumping lemma, in which p, the ‘pumping length’, may be taken to be the number of states of the DFA.

So a DFA can be smart enough to recognise multiples of a particular prime number. But it cannot be smart enough recognise all prime numbers,

even expressed in unary notation (2 = aa, 3 = aaa, 5 = aaaaa, etc). The proof, above right, typifies the application of the pumping lemma in

disproofs of regularity : assume a recognising DFA exists and exhibit a word which, when ‘pumped’ must fall outside the recognised language.

This lemma, which generalises to context-free languages, is due to Yehoshua Bar-Hillel (1915–1975), Micha Perles and Eli Shamir.
Web link: www.seas.upenn.edu/˜cit596/notes/dave/pumping0.html (and don’t miss www.cs.brandeis.edu/˜mairson/poems/node1.html!)

Further reading: Models of Computation and Formal Languages by R Gregory Taylor, Oxford University Press Inc, USA, 1997.

Created by Robin Whitty for www.theoremoftheday.org
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Conjecture
A statement believed to be true, but for which we have no proof.

Example 4

1. Goldbach’s Conjecture

2. The Riemann Hypothesis

3. Schanuel’s Conjecture
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Proof
Logical explanation of why a statement is true; a method for
establishing truth.

Logic
The study of methods and principles used to distinguish
good (correct) from bad (incorrect) reasoning.

Example 5

1. Classical predicate logic

2. Hoare logic

3. Temporal logic

— 25 —

Axiom
A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be
proved (just to get us going in a subject) or they can be
used in definitions.

Example 6

1. Euclidean Geometry

2. Riemannian Geometry

3. Hyperbolic Geometry
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Definition
An explanation of the mathematical meaning of a word (or
phrase).

The word (or phrase) is generally defined in terms of prop-
erties.

Warning: It is vitally important that you can recall definitions
precisely. A common problem is not to be able to advance in
some problem because the definition of a word is unknown.
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Definition, theorem, intuition, proof
in practice

Definition 7 An integer is said to be odd whenever it is of the form
2 · i+ 1 for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so
is m · n.
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Intuition:

— 29 —

YOUR PROOF OF Proposition 8 (on page 28):
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MY PROOF OF Proposition 8 (on page 28) : Let m and n be
arbitrary odd integers. Thus, m = 2 · i + 1 and n = 2 · j + 1 for
some integers i and j. Hence, we have that m · n = 2 · k + 1 for
k = 2 · i · j+ i+ j, showing that m · n is indeed odd.
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Warning: Though the scratch work

m = 2 · i+ 1 n = 2 · j+ 1

∴
m · n = (2 · i+ 1) · (2 · j+ 1)

= 4 · i · j+ 2 · i+ 2 · j+ 1

= 2 · (2 · i · j+ i+ j) + 1

contains the idea behind the given proof,

I will not accept it as a proof!
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Mathematical proofs . . .

A mathematical proof is a sequence of logical deductions from
axioms and previously-proved statements that concludes with
the proposition in question.

The axiom-and-proof approach is called the axiomatic method.
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. . . in computer science

Mathematical proofs play a growing role in computer science
(e.g. they are used to certify that software and hardware will
always behave correctly, something that no amount of testing
can do).

For a computer scientist, some of the most important things to
prove are the correctness of programs and systems —whether
a program or system does what it’s supposed to do. Developing
mathematical methods to verify programs and systems remains
and active research area.
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Writing good proofs
from Section 1.9 of Mathematics for Computer Science

by E. Lehman, F.T. Leighton, and A.R. Meyer

◮ State your game plan.

◮ Keep a linear flow.

◮ A proof is an essay, not a calculation.

◮ Avoid excessive symbolism.

◮ Revise and simplify.

◮ Introduce notation thoughtfully.

◮ Structure long proofs.

◮ Be wary of the “obvious”.

◮ Finish.
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How to solve it
by G. Polya

◮ You have to understand the problem.

◮ Devising a plan.

Find the connection between the data and the unknown.
You may be obliged to consider auxiliary problems if an
immediate connection cannot be found. You should ob-
tain eventually a plan of the solution.

◮ Carry out your plan.

◮ Looking back.

Examine the solution obtained.
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Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into
other statements, and it is composite when it is built by using several
(simple or composite statements) connected by logical expressions
(e.g., if. . . then. . . ; . . . implies . . . ; . . . if and only if . . . ; . . . and. . . ;
either . . . or . . . ; it is not the case that . . . ; for all . . . ; there exists . . . ;
etc.)

Examples:

‘2 is a prime number’

‘for all integers m and n, if m ·n is even then either n or m are even’
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Implication

Theorems can usually be written in the form

if a collection of assumptions holds,
then so does some conclusion

or, in other words,

a collection of assumptions imply some conclusion

or, in symbols,

a collection of hypotheses =⇒ some conclusion

NB Identifying precisely what the assumptions and conclusions are
is the first goal in dealing with a theorem.
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The main proof strategy for implication:

To prove a goal of the form

P =⇒ Q

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to
the same thing as adding it to your list of hypotheses.
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Proof pattern:
In order to prove that

P =⇒ Q

1. Write: Assume P.

2. Show that Q logically follows.
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Scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

Q
...

P
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Proposition 8 If m and n are odd integers, then so is m · n.

YOUR PROOF:

— 42 —

MY PROOF: Assume that m and n are odd integers. That is, by
definition, assume that m = 2 · i + 1 for some integer i and that
n = 2·j+1 for some integer j. Hence, m·n = (2·i+1)·(2·j+1) = · · ·
. . .
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Go to Workout 1
on page 287

— 44 —

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent
statement given by its contrapositive. a

Since

the contrapositive of ‘P implies Q’ is ‘not Q implies not P’

we obtain the following:

aSee Corollary 40 (on page 140).
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Proof pattern:
In order to prove that

P =⇒ Q

1. Write: We prove the contrapositive; that is, . . . and state
the contrapositive.

2. Write: Assume ‘the negation of Q’.

3. Show that ‘the negation of P’ logically follows.
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Scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

not P
...

not Q
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Definition 9 A real number is:

◮ rational if it is of the form m/n for a pair of integers m and n;
otherwise it is irrational.

◮ positive if it is greater than 0, and negative if it is smaller than 0.

◮ nonnegative if it is greater than or equal 0, and nonpositive if it
is smaller than or equal 0.

◮ natural if it is a nonnegative integer.
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Proposition 10 Let x be a positive real number. If x is irrational
then so is

√
x.

YOUR PROOF:
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MY PROOF: Assume that x is a positive real number. We prove the
contrapositive; that is, if

√
x is rational then so is x. Assume that

√
x

is a rational number. That is, by definition, assume that
√
x = m/n

for some integers m and n. It follows that x = m2/n2 and, since m2

and n2 are natural numbers, we have that x is a rational number as
required.
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Go to Workout 2
on page 288
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Logical Deduction

− Modus Ponens −

A main rule of logical deduction is that of Modus Ponens:

From the statements P and P =⇒ Q,
the statement Q follows.

or, in other words,

If P and P =⇒ Q hold then so does Q.

or, in symbols,

P P =⇒ Q

Q
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The use of implications:

To use an assumption of the form P =⇒ Q,
aim at establishing P.
Once this is done, by Modus Ponens, one can
conclude Q and so further assume it.
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Theorem 11 Let P1, P2, and P3 be statements. If P1 =⇒ P2 and
P2 =⇒ P3 then P1 =⇒ P3.

Scratch work:
Assumptions Goal

P3

(i) P1, P2, and P3 are statements.

(ii) P1 =⇒ P2

(iii) P2 =⇒ P3

(iv) P1

— 54 —

Now, by Modus Ponens from (ii) and (iv), we have that

(v) P2 holds
and, by Modus Ponens from (iii) and (v), we have that

P3 holds
as required.

Homework Turn the above scratch work into a proof.
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NB Often a proof of P =⇒ Q factors into a chain of implications,
each one a manageble step:

P =⇒ P1

=⇒ P2

...

=⇒ Pn

=⇒ Q

which is shorthand for

P =⇒ P1 , P1 =⇒ P2 , . . . , Pn =⇒ Q .
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Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q P iff Q

or, in symbols,

P ⇐⇒ Q
— 57 —

Proof pattern:
In order to prove that

P ⇐⇒ Q

1. Write: (=⇒) and give a proof of P =⇒ Q.

2. Write: (⇐=) and give a proof of Q =⇒ P.
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Proposition 12 Suppose that n is an integer. Then, n is even iff n2

is even.

YOUR PROOF:
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MY PROOF:

(=⇒) This implication is a corollary of Workout 1.1 (on page 287).

(⇐=) We prove the contrapositive; that is, that n odd implies n2 odd.
Assume that n is odd; that is, by definition, that n = 2 ·k+1 for some
integer k. Then, n2 = · · · . . .

Homework Provide details of the argument for (=⇒) and finish the
proof of (⇐=).
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Divisibility

Definition 13 Let d and n be integers. We say that d divides n, and
write d | n, whenever there is an integer k such that n = k · d.

Example 14 The statement 2 | 4 is true, while 4 | 2 is not.

NB The symbol “ | ” is not an operation on integers. Rather it is
a property that a pair of integers may or may not have between
themselves.

— 61 —

Go to Workout 3
on page 289
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Definition 15 Fix a positive integer m. For integers a and b, we
say that a is congruent to b modulo m, and write a ≡ b (mod m),
whenever m | (a− b).

Example 16

1. 18 ≡ 2 (mod 4)

2. 2 ≡ −2 (mod 4)

3. 18 ≡ −2 (mod 4)
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NB The notion of congruence vastly generalises that of even and
odd:

Proposition 17 For every integer n,

1. n is even if, and only if, n ≡ 0 (mod 2), and

2. n is odd if, and only if, n ≡ 1 (mod 2).

Homework Prove the above proposition.

— 64 —

Go to Workout 4
on page 291
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The use of bi-implications:

To use an assumption of the form P ⇐⇒ Q, use it as two
separate assumptions P =⇒ Q and Q =⇒ P.

— 66 —

Go to Workout 5
on page 293
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Universal quantification

Universal statements are of the form

for all individuals x of the universe of discourse,
the property P(x) holds

or, in other words,

no matter what individual x in the universe of discourse
one considers, the property P(x) for it holds

or, in symbols,

∀x. P(x)
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Example 18

1. Proposition 8 (on page 28).

2. (Proposition 10 on page 49) For every positive real number x,
if x is irrrational then so is

√
x.

3. (Proposition 12 on page 59) For every integer n, we have that
n is even iff so is n2.

4. Proposition 17 (on page 64).
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The main proof strategy for universal statements:

To prove a goal of the form

∀x. P(x)
let x stand for an arbitrary individual and prove P(x).
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Proof pattern:
In order to prove that

∀x. P(x)

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new in the
proof! If for some reason the variable x is already being
used in the proof to stand for something else, then you
must use an unused variable, say y, to stand for the
arbitrary individual, and prove P(y).

2. Show that P(x) holds.
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Scratch work:

Before using the strategy

Assumptions Goal

∀x. P(x)
...

After using the strategy

Assumptions Goal

P(x) (for a fresh x)
...
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Proposition 19 Fix a positive integer m. For integers a and b, we
have that a ≡ b (mod m) if, and only if, for all positive integers n, we
have that n · a ≡ n · b (mod n ·m).

YOUR PROOF:
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MY PROOF: Let m and a, b be integers with m positive.

(=⇒) Assume that a ≡ b (mod m); that is, by definition, that
a− b = k ·m for some integer k. We need show that for all
positive integers n,

n · a ≡ n · b (mod n ·m) .

Indeed, for an arbitrary positive integer n, we then have that
n · a− n · b = n · (a− b) = (n · k) ·m; so that m | (n · a− n · b),
and hence we are done.

(⇐=) Assume that for all positive integers n, we have that
n · a ≡ n · b (mod n ·m). In particular, we have this property for
n = 1, which states that 1 · a ≡ 1 · b (mod 1 ·m); that is,
that a ≡ b (mod m).
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Go to Workout 6
on page 295
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Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

P & Q or P ∧Q
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The proof strategy for conjunction:

To prove a goal of the form

P & Q

first prove P and subsequently prove Q (or vice versa).
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Proof pattern:
In order to prove

P & Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.
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Scratch work:

Before using the strategy

Assumptions Goal

P & Q
...

After using the strategy

Assumptions Goal Assumptions Goal

P Q
...

...
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The use of conjunctions:

To use an assumption of the form P & Q,
treat it as two separate assumptions: P and Q.
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Theorem 20 For every integer n, we have that 6 | n iff 2 | n and
3 | n.

YOUR PROOF:
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MY PROOF: Let n be an arbitrary integer.

(=⇒) Assume 6 | n; that is, n = 6 · k for some integer k.

Firstly, we show that 2 | n; which is indeed the case because n =

2 · (3 · k).

Secondly, we show that 3 | n; which is indeed the case because
n = 3 · (2 · k).

(⇐=) Assume that 2 | n and that 3 | n. Thus, n = 2 · i for an integer
i and also n = 3 · j for an integer j. We need prove that n = 6 · k for
some integer k. The following calculation shows that this is indeed
the case:

6 · (i− j) = 3 · (2 · i) − 2 · (3 · j) = 3 · n− 2 · n = n .

— 82 —

Go to Workout 7
on page 297
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Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols,

∃x. P(x)

— 84 —

Theorem 21 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For every y in between f(a)

and f(b), there exists v in between a and b such that f(v) = y.

Intuition:

— 85 —

The main proof strategy for existential statements:

To prove a goal of the form

∃x. P(x)
find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.

— 86 —

Proof pattern:
In order to prove

∃x. P(x)

1. Write: Let w = . . . (the witness you decided on).

2. Provide a proof of P(w).
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Scratch work:

Before using the strategy

Assumptions Goal

∃x. P(x)
...

After using the strategy

Assumptions Goals

P(w)
...

w = . . . (the witness you decided on)

— 88 —

Proposition 22 For every positive integer k, there exist natural
numbers i and j such that 4 · k = i2 − j2.

Scratch work:

k i j

1 2 0

2 3 1

3 4 2
...

n n+ 1 n− 1
...

— 89 —

YOUR PROOF OF Proposition 22:

— 90 —

MY PROOF OF Proposition 22: For an arbitrary positive integer k,
let i = k+ 1 and j = k− 1. Then,

i2 − j2 = (k+ 1)2 − (k− 1)2

= k2 + 2 · k+ 1− k2 + 2 · k− 1

= 4 · k

and we are done.
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Proposition 23 For every positive integer n, there exists a natural
number l such that 2l ≤ n < 2l+1.

YOUR PROOF:

— 92 —

MY PROOF: For an arbitrary positive integer n, let l = ⌊logn⌋. We
have that

l ≤ logn < l+ 1

and hence, since the exponential function is increasing, that

2l ≤ 2logn < 2l+1 .

As, n = 2logn we are done.

— 93 —

The use of existential statements:

To use an assumption of the form ∃x. P(x), introduce a new
variable x0 into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x0) true.

— 94 —

Theorem 24 For all integers l, m, n, if l | m and m | n then l | n.

YOUR PROOF:
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MY PROOF: Let l, m, and n be arbitrary integers. Assume that
l | m and that m | n; that is, that

(†) ∃ integer i . m = i · l

and that

(‡) ∃ integer j . n = j ·m .

From (†), we can thus assume that m = i0 · l for some integer i0

and, from (‡), that n = j0 ·m for some integer j0. With this, our goal
is to show that l | m; that is, that there exists an integer k such that
n = k · l. To see this, let k = j0 · i0 and note that k · l = j0 · i0 · l =
j0 ·m = n.

— 96 —

Go to Workout 8
on page 299

— 97 —

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q

— 98 —

The main proof strategy for disjunction:

To prove a goal of the form

P ∨ Q

you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.
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Proposition 25 For all integers n, either n2 ≡ 0 (mod 4) or
n2 ≡ 1 (mod 4).

YOUR PROOF:
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MY PROOF SKETCH: Let n be an arbitrary integer.

We may try to prove that n2 ≡ 0 (mod 4), but this is not the case as
12 ≡ 1 (mod 4).

We may instead try to prove that n2 ≡ 1 (mod 4), but this is also not
the case as 02 ≡ 0 (mod 4).

So we try breaking the proof into cases. In view of a few experi-
ments, we are led to consider the following two cases:

(i) n is even.

(ii) n is odd.
and try to see whether in each case either n2 ≡ 0 (mod 4) or
n2 ≡ 1 (mod 4) can be established.

— 101 —

In the first case (i), n is of the form 2 · m for some integer m. It
follows that n2 = 4 ·m2 and hence that n2 ≡ 0 (mod 4).

In the second case (ii), n is of the form 2 ·m+1 for some integer m.
So it follows that n2 = 4·m·(m+1)+1 and hence that n2 ≡ 1 (mod 4).

— 102 —

NB The proof sketch contains a proof of the following:

Lemma 26 For all integers n,

1. if n is even, then n2 ≡ 0 (mod 4); and

2. if n is odd, then n2 ≡ 1 (mod 4).

Hence, for all integers n, either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).
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Go to Workout 9
on page 301

— 104 —

Another proof strategy for disjunction:

Proof pattern:
In order to prove

P ∨ Q

write: If P is true, then of course P ∨ Q is true. Now

suppose that P is false. and provide a proof of Q.

NB This arises from the main proof strategy for disjunction where
the proof has been broken in the two cases:

(i) P holds.

(ii) P does not hold.

— 105 —

Scratch work:

Before using the strategy

Assumptions Goal

P ∨ Q
...

After using the strategy

Assumptions Goal

Q
...

not P

— 106 —

The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in
turn: (i) assume P1 to establish Q, and (ii) assume P2 to
establish Q.
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Scratch work:

Before using the strategy

Assumptions Goal
Q

...
P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal
Q Q

...
...

P1 P2

— 108 —

Proof pattern:
In order to prove Q from some assumptions amongst which there
is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-
sumptions. Case (ii): Assume P2. and provide a proof of Q from
it and the other assumptions.

— 109 —

A little arithmetic

Lemma 27 For all natural numbers p and m, if m = 0 or m = p then(
p
m

)
≡ 1 (mod p).

YOUR PROOF:

— 110 —

MY PROOF: Let p and m be arbitrary natural numbers.

From m = 0 or m = p, we need show that
(
p
m

)
≡ 1 (mod p). We

prove the following two cases in turn: (i) that assuming m = 0, we
have

(
p
m

)
≡ 1 (mod p); and (ii) that assuming m = p, we have(

p
m

)
≡ 1 (mod p).

Case (i): Assume m = 0. Then,
(
p
m

)
= 1 and so

(
p
m

)
≡ 1 (mod p).

Case (ii): Assume m = p. Then,
(
p
m

)
= 1 and so

(
p
m

)
≡ 1 (mod p).
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
(
p
m

)
≡ 0 (mod p).

YOUR PROOF:

— 112 —

MY PROOF: Let p and m be arbitrary integers. Assume that p is
prime and that 0 < m < p. Then,

(
p
m

)
= p · [ (p−1)!

m!·(p−m)!
] and since the

fraction (p−1)!
m!·(p−m)!

is in fact a natural numbera, we are done.

aProvide the missing argument, noting that it relies on p being prime and on

m being greater than 0 and less than p.
— 113 —

Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,
either

(
p
m

)
≡ 0 (mod p) or

(
p
m

)
≡ 1 (mod p).

YOUR PROOF:

— 114 —

MY PROOF: Let m be a natural number less than or equal a prime
number p. We establish that either

(
p
m

)
≡ 0 (mod p) or(

p
m

)
≡ 1 (mod p) by breaking the proof into three cases:

(i) m = 0 , (ii) 0 < m < p , (iii) m = p

and showing, in each case, that either
(
p
m

)
≡ 0 (mod p) or(

p
m

)
≡ 1 (mod p) can be established.

Indeed, in the first case (i), by Lemma 27 (on page 110), we have
that

(
p
m

)
≡ 1 (mod p); in the second case (ii), by Lemma 28 (on

page 112), we have that
(
p
m

)
≡ 0 (mod p); and, in the third case

(iii), by Lemma 27 (on page 110), we have that
(
p
m

)
≡ 1 (mod p).

— 115 —



Binomial theorem

Theorem 30 (Binomial theorem)a For all natural numbers n,

(x+ y)n =
∑n

k=0

(
n
k

)
· xn−k · yk .

Corollary 31

1. For all natural numbers n, (z+ 1)n =
∑n

k=0

(
n
k

)
· zk

2. 2n =
∑n

k=0

(
n
k

)

Corollary 32 For all prime numbers p, 2p ≡ 2 (mod p).

aSee page 246.

— 116 —

THEOREM OF THE DAY
The Binomial Theorem For n a positive integer and real-valued variables x and y,

(x + y)n =

n∑

k=0

(
n

k

)
xn−kyk.

Given n distinct objects, the binomial coefficient
(

n

k

)
= n!/k!(n − k)! counts the number of ways of choosing k. Transcending its combinatorial

role, we may instead write the binomial coefficient as:
(

n

k

)
= n

k
× n−1

k−1
× · · · × n−(k−1)

1
; taking

(
n

0

)
= 1. This form is defined when n is a real or even

a complex number. In the above graph, n is a real number, and increases continuously on the vertical axis from -2 to 7.5. For different values

of k, the value of
(

n

k

)
has been plotted but with its sign reversed on reaching n = 2k, giving a discontinuity. This has the effect of spreading the

binomial coefficients out on either side of the vertical axis: we recover, for integer n, a sort of (upside down) Pascal’s Triangle. The values of

the triangle for n = 7 have been circled.

If the right-hand summation in the theorem is extended to k = ∞, the result still holds, provided the summation converges. This is guaranteed

when n is an integer or when |y/x| < 1, so that, for instance, summing for (4 + 1)1/2 gives a method of calculating
√

5.

The binomial theorem may have been known, as a calculation of poetic metre, to the Hindu scholar Pingala in the 5th century
BC. It can certainly be dated to the 10th century AD. The extension to complex exponent n, using generalised binomial
coefficients, is usually credited to Isaac Newton.

Web link: www.iwu.edu/∼lstout/aesthetics.pdf an absorbing discussion on the aesthetics of proof.

Further reading: A Primer of Real Analytic Functions, 2nd ed. by Steven G. Krantz and Harold R. Parks, Birkhäuser Verlag AG, 2002,

section 1.5.

Created by Robin Whitty for www.theoremoftheday.org— 117 —

A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(m+ n)p ≡ mp + np (mod p) .

YOUR PROOF: a

aHint: Use Proposition 29 (on page 114) and the Binomial Theorem (Theo-

rem 30 on page 116).
— 118 —

MY PROOF: Let m, n, and p be natural numbers with p prime.

Here are two arguments.

1. By the Binomial Theorem (Theorem 30 on page 116),

(m+ n)p − (mp + np) = p ·
[∑p−1

k=1
(p−1)!

k!·(p−k)!
·mp−k · nk

]
.

Since for 1 ≤ k ≤ p − 1 each fraction (p−1)!
k!·(p−k)!

is in fact a natural
number, we are done.

2. By the Binomial Theorem (Theorem 30 on page 116) and
Proposition 29 (on page 114),

(m+ n)p − (mp + np) =
∑p−1

k=1

(
p
k

)
·mp−k · nk ≡ 0 (mod p) .

Hence (m+ n)p ≡ mp + np (mod p).
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

YOUR PROOF: a

aHint: Consider the cases i = 0 and i > 0 separately. In the latter case,

iteratively use the Dropout Lemma a number of i = 1+ · · ·+ 1︸ ︷︷ ︸
i ones

times.

— 120 —

MY PROOF: Let m and i be natural numbers and let p be a prime.
Using the Dropout Lemma (Corollary 34) one calculates i times, for
j ranging from 0 to i, as follows:

(m+ i)p ≡
(
m+ (i− 1)

)p
+ 1

≡ · · ·
≡

(
m+ (i− j)

)p
+ j

≡ · · ·
≡ mp + i

— 121 —

The Many Dropout Lemma (Proposition 35) gives the fist part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the
second one will be proved later on (see page 214) .

— 122 —

Btw

1. The answer to the puzzle on page 14 is:

on the chair numbered 1

because, by Fermat’s Little Theorem, either n4 ≡ 0 (mod 5) or
n4 ≡ 1 (mod 5).

2. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
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THEOREM OF THE DAY
Theorem (Fermat’s Little Theorem) If p is a prime number, then

ap−1 ≡ 1 (mod p).
for any positive integer a not divisible by p.

Suppose p = 5. We can imagine a row of a copies of an a× a× a Rubik’s cube (let us suppose, although this is not how Rubik created his cube,

that each is made up of a3 little solid cubes, so that is a4 little cubes in all.) Take the little cubes 5 at a time. For three standard 3 × 3 cubes,

shown here, we will eventually be left with precisely one little cube remaining. Exactly the same will be true for a pair of 2 × 2 ‘pocket cubes’

or four of the 4× 4 ‘Rubik’s revenge’ cubes. The ‘Professor’s cube’, having a = 5, fails the hypothesis of the theorem and gives remainder zero.

The converse of this theorem, that ap−1 ≡ 1 (mod p), for some a not dividing p, implies that p is prime, does not hold. For example, it can be

verified that 2340 ≡ 1 (mod 341), while 341 is not prime. However, a more elaborate test is conjectured to work both ways: remainders add,

so the Little Theorem tells us that, modulo p, 1p−1 + 2p−1 + . . . + (p − 1)p−1 ≡
p−1︷             ︸︸             ︷

1 + 1 + . . . + 1 = p − 1. The 1950 conjecture of the Italian

mathematician Giuseppe Giuga proposes that this only happens for prime numbers: a positive integer n is a prime number if and only

if 1n−1 + 2n−1 + . . . + (n − 1)n−1 ≡ n − 1 (mod n). The conjecture has been shown by Peter Borwein to be true for all numbers with

up to 13800 digits (about 5 complete pages of digits in 12-point courier font!)

Fermat announced this result in 1640, in a letter to a fellow civil servant Frénicle de Bessy. As with his ‘Last Theorem’ he
claimed that he had a proof but that it was too long to supply. In this case, however, the challenge was more tractable: Leonhard
Euler supplied a proof almost 100 years later which, as a matter of fact, echoed one in an unpublished manuscript of Gottfried
Wilhelm von Leibniz, dating from around 1680.

Web link: www.math.uwo.ca/∼dborwein/cv/giuga.pdf. The cube images are from: www.ws.binghamton.edu/fridrich/.

Further reading: Elementary Number Theory, 6th revised ed., by David M. Burton, MacGraw-Hill, 2005, chapter 5.

From www.theoremoftheday.org by Robin Whitty. This file hosted by London South Bank University
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Go to Workout 10
on page 303
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Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
— 126 —

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

¬
(
P =⇒ Q

)
⇐⇒ P & ¬Q

¬
(
P ⇐⇒ Q

)
⇐⇒ ¬P ⇐⇒ ¬Q

¬
(
∀x. P(x)

)
⇐⇒ ∃x.¬P(x)

¬
(
P & Q

)
⇐⇒ (¬P) ∨ (¬Q)

¬
(
∃x. P(x)

)
⇐⇒ ∀x.¬P(x)

¬
(
P ∨ Q

)
⇐⇒ (¬P) & (¬Q)

¬
(
¬P

)
⇐⇒ P

¬P ⇐⇒ (P ⇒ false)
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Go to Workout 11
on page 304
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THEOREM OF THE DAY
De Morgan’s Laws If B, a set containing at least two elements, and equipped with the operations +, ×
and ′ (complement), is a Boolean algebra, then, for any x and y in B,

(x + y)′ = x′ × y′, and (x × y)′ = x′ + y′.

Truth table verification:

x y ¬ (x ∨ y) ¬x ∧ ¬y

0 0 1 0 1 1 1

0 1 0 1 1 0 0

1 0 0 1 0 0 1

1 1 0 1 0 0 0

and ¬(x ∧ y) = ¬x ∨ ¬x similarly.

De Morgan’s laws are readily derived from the axioms of Boolean algebra and indeed are themselves sometimes treated as axiomatic. They
merit special status because of their role in translating between + and ×, which means, for example, that Boolean algebra can be defined entirely
in terms of one or the other. This property, entirely absent in the arithmetic of numbers, would seem to mark Boolean algebras as highly
specialised creatures, but they are found everywhere from computer circuitry to the sigma-algebras of probability theory. The illustration here
shows De Morgan’s laws in their set-theoretic, logic circuit guises, and truth table guises.

These laws are named after Augustus De Morgan (1806–1871) as is the building in which resides the London Mathematical
Society, whose first president he was.

Web link: www.mathcs.org/analysis/reals/logic/notation.html

Further reading: Boolean Algebra and Its Applications by J. Eldon Whitesitt, Dover Publications Inc., 1995.

Created by Robin Whitty for www.theoremoftheday.org
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Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

YOUR PROOF:

— 130 —

MY PROOF: Assume

(i) P =⇒ Q .

Assume

¬Q ;

that is,

(ii) Q =⇒ false .

From (i) and (ii), by Theorem 11 (on page 54), we have that

P =⇒ false ;

that is,

¬P

as required.
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Theorem 38 The real number
√
2 is irrational.

YOUR PROOF:

— 132 —

MY PROOF: We prove the equivalent statement:

it is not the case that
√
2 is rational

by showing that the assumption

(i)
√
2 is rational

leads to contradiction.

— 133 —

Assume (i); that is, that there exist integers m and n such that√
2 = m/n. Equivalently, by simplification (see also Lemma 41 on

page 142 below), assume that there exist integers p and q both of
which are not even such that

√
2 = p/q. Under this assumption, let

p0 and q0 be such integers; that is, integers such that

(ii) p0 and q0 are not both even
and

(iii)
√
2 = p0/q0 .

From (iii), one calculates that p0
2 = 2 · q0

2 and, by Proposition 12
(on page 59), concludes that p0 is even; that is, of the form 2 · k
for an integer k. With this, and again from (iii), one deduces that
q0

2 = 2 · k2 and hence, again by Proposition 12 (on page 59), that
also q0 is even; thereby contradicting assumption (ii). Hence,

√
2 is

not rational.
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Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement ¬P =⇒ false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P

— 136 —

Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

YOUR PROOF:
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MY PROOF: Assume

(i) ¬Q =⇒ ¬P .

Assume

(ii) P .

We need show Q.

Assume, by way of contradiction, that

(iii) ¬Q

holds.

— 138 —

From (i) and (iii), by Theorem 11 (on page 54), we have

(iv) ¬P

and now, from (ii) and (iv), we obtain a contradiction. Thus, ¬Q
cannot be the case; hence

Q

as required.
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Corollary 40 For all statements P and Q,

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P) .

— 140 —

Go to Workout 12
on page 306

— 141 —

Lemma 41 A positive real number x is rational iff

∃positive integers m,n :

x = m/n & ¬
(
∃prime p : p | m & p | n

) (†)

YOUR PROOF:

— 142 —

MY PROOF:

(⇐=) Holds trivially.

(=⇒) Assume that

(i) ∃positive integers a, b : x = a/b .

We show (†) by contradiction. So, suppose (†) is false; that isa,
assume that

(ii) ∀positive integers m,n :

x = m/n =⇒ ∃prime p : p | m & p | n .

From (i), let a0 and b0 be positive integers such that
aHere we use three of the logical equivalences of page 127 (btw, which ones?)

and the logical equivalence (P ⇒ Q) ⇔ (¬P ∨Q).
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(iii) x = a0/b0 .

It follows from (ii) and (iii) that there exists a prime p0 that divides
both a0 and b0. That is, a0 = p0 · a1 and b0 = p0 · b1 for positive
integers a1 and b1. Since

(iv) x = a1/b1 ,

it follows from (ii) and (iv) that there exists a prime p1 that divides
both a1 and b1. Hence, a0 = p0 ·p1 ·a2 and b0 = p0 ·p1 ·b2 for positive
integers a2 and b2. Iterating this argument l number of times, we
have that a0 = p0 · . . . · pl · al+1 and b0 = p0 · . . . · pl · bl+1 for primes
p0, . . . , pl and positive integers al+1 and bl+1. In particular, for l =

⌊log a0⌋ we have

a0 = p0 · . . . · pl · al+1 ≥ 2l+1 > a0 .

This is a contradiction. Therefore, (†) must be true.
— 144 —

Problem Like many proofs by contradiction, the previous proof is
unsatisfactory in that it does not gives us as much information as
we would like a. In this particular case, for instance, given a pair
of numerator and denominator representing a rational number we
would like a method, construction, or algorithm providing us with its
representation in lowest terms (or reduced form). We will see later
on (see page 201) that there is in fact an efficient algorithm for doing
so, but for that a bit of mathematical theory needs to be developed.

aIn the logical jargon this is referred to as not being constructive.
— 145 —

Number systems

Topics

Natural numbers. The laws of addition and multiplication. Integers
and rational numbers: additive and multiplicative inverses. The
division theorem and algorithm: quotients and remainders. Modular
arithmetic. Euclid’s Algorithm for computing the gcd (greatest
common divisor)a. Euclid’s Theorem. The Extended Euclid’s
Algorithm for computing the gcd as a linear combination.
Multiplicative inverses in modular arithmetic. Diffie-Hellman
cryptographic method.

aaka hcf (highest common factor).
— 146 —

Complementary reading:

◮ Chapters 27 to 29 of How to Think Like a Mathematician by
K. Houston.

⋆ Chapter 8 of Mathematics for Computer Science by E. Lehman,
F. T. Leighton, and A. R. Meyer.

⋆ Chapters I and VIII of The Higher Arithmetic by H. Davenport.

— 147 —



Objectives

◮ Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers, rationals,
and modular integers.

◮ Prove the correctness of three basic algorithms in the theory
of numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

◮ Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.
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Natural numbers

In the beginning there were the natural numbers

N : 0 , 1 , . . . , n , n+ 1 , . . .

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N

Remark This viewpoint will be looked at later in the course.
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The basic operations of this number system are:

◮ Addition
m︷ ︸︸ ︷∗ · · · ∗

n︷ ︸︸ ︷∗ · · · · · · ∗︸ ︷︷ ︸
m+n

◮ Multiplication

m

{ n︷ ︸︸ ︷∗ · · · · · · · · · · · · ∗
... m · n ...
∗ · · · · · · · · · · · · ∗

— 150 —

The additive structure (N, 0,+) of natural numbers with zero and
addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Also the multiplicative structure (N, 1, ·) of natural numbers with one
and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m

— 152 —

Btw: Most probably, though without knowing it, you have already
encountered several monoids elsewhere. For instance:

1. The booleans with false and disjunction.

2. The booleans with true and conjunction.

3. Lists with nil and concatenation.

While the first two above are commutative this is not generally the
case for the latter.
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The additive and multiplicative structures interact nicely in that they
satisfy the

◮ Distributive law

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.

◮ Additive cancellation

For all natural numbers k, m, n,

k+m = k+ n =⇒ m = n .

◮ Multiplicative cancellation

For all natural numbers k, m, n,

if k 6= 0 then k ·m = k · n =⇒ m = n .
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Inverses

Definition 42

1. A number x is said to admit an additive inverse whenever there
exists a number y such that x+ y = 0.

2. A number x is said to admit a multiplicative inverse whenever
there exists a number y such that x · y = 1.

Remark In the presence of inverses, we have cancellation; though
the converse is not necessarily the case. For instance, in the system
of natural numbers, only 0 has an additive inverse (namely itself),
while only 1 has a multiplicative inverse (namely itself).

— 156 —

Extending the system of natural numbers (i) to admit all additive
inverses and then (ii) to also admit all multiplicative inverses for
non-zero numbers yields two very interesting results:

(i) the integers

Z : . . . − n , . . . , −1 , 0 , 1 , . . . , n , . . .

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(ii) the rationals Q which then form what in the mathematical jargon
is referred to as a field.
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The division theorem and algorithm

Theorem 43 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n+ r.

Definition 44 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).

Btw Definitions determined by existence and uniqueness
properties such as the above are very common in mathematics.
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The Division Algorithm in ML:

fun divalg( m , n )

= let

fun diviter( q , r )

= if r < n then ( q , r )

else diviter( q+1 , r-n )

in

diviter( 0 , m )

end

fun quo( m , n ) = #1( divalg( m , n ) )

fun rem( m , n ) = #2( divalg( m , n ) )
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Theorem 45 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

YOUR PROOF:
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MY PROOF SKETCH: Let m and n be natural numbers with n

positive.

The evaluation of divalg(m,n) diverges iff so does the evaluation
of diviter(0,m) within this call; and this is in turn the case iff
m− i · n ≥ n for all natural numbers i. Since this latter statement is
absurd, the evaluation of divalg(m,n) terminates. In fact, it does
so with worse time complexity O(m).

For all calls of diviter with (q, r) originating from the evaluation of
divalg(m,n) one has that

0 ≤ q & 0 ≤ r & m = q · n+ r

because
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1. for the first call with (0,m) one has

0 ≤ 0 & 0 ≤ m & m = 0 · n+m ,

and

2. all subsequent calls with (q+ 1, r− n) are done with

0 ≤ q & n ≤ r & m = q · n+ r

so that

0 ≤ q+ 1 & 0 ≤ r− n & m = (q+ 1) · n+ (r− n)

follows.

Finally, since in the last call the output pair (q0, r0) further satisfies
that r0 < n, we have that

0 ≤ q0 & 0 ≤ r0 ≤ n & m = q0 · n+ r0

as required.
— 162 —

Proposition 46 Let m be a positive integer. For all integers k and
l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

YOUR PROOF:
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MY PROOF: Let m be a positive integer, and let k, l be integers.

(=⇒) Assume k ≡ l (mod m). Then,

max
(
rem(k,m) , rem(l,m)

)
−min

(
rem(k,m) , rem(l,m)

)

is a non-negative multiple of m below it. Hence, it is necessarily 0

and we are done.

(⇐=) Assume that rem(k,m) = rem(l,m). Then,

k− l =
(
quo(k,m) − quo(l,m)

)
·m

and we are done.
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Corollary 47 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

YOUR PROOF:
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MY PROOF: Let m be a positive integer.

(1) Holds because, for every natural number n, we have that
n− rem(n,m) = quo(n,m) ·m.

(2) Let k be an integer. Noticing that k+ |k| ·m is a natural number
congruent to k modulo m, define [k]m as

rem
(
k+ |k| ·m, m

)
.

This establishes the existence property. As for the uniqueness
property, we will prove the following statement:

For all integers l such that 0 ≤ l < m and k ≡ l (mod m) it
is necessarily the case that l = [k]m.
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To this end, let l be an integer such that 0 ≤ l < m and
k ≡ l (mod m). Then,

l = rem(l,m)

= rem(k,m) , by Proposition 46 (on page 163)

= rem([k]m,m) , by Proposition 46 (on page 163)

= [k]m
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Go to Workout 13
on page 307
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Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k+ l]m , k ·m l = [k · l]m

for all 0 ≤ k, l < m.

Example 48 The modular-arithmetic structure (Z2, 0,+2, 1, ·2) is
that of booleans with logical OR as addition and logical AND as
multiplication.
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Example 49 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 50 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 51 For all natural numbers m > 1, the
modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

Remark The most interesting case of the omitted proof consists in
establishing the associativity laws of addition and multiplication, for
which see Workout 14.2 on page 309.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
(see page 230) .
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Go to Workout 14
on page 309
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Important mathematical jargon : Sets

Very roughly, sets are the mathematicians’ datatypes. Informally,
we will consider a set as a (well-defined, unordered) collection of
mathematical objects, called the elements (or members) of the set.

Though only implicitly, we have already encountered many sets so
far, e.g. the sets of natural numbers N, integers Z, positive integers,
even integers, odd integers, primes, rationals Q, reals R, booleans,
and finite initial segments of natural numbers Zm.
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It is now due time to be explicit. The theory of sets plays important
roles in mathematics, logic, and computer science, and we will be
looking at some of its very basics later on in the course. For the
moment, we will just introduce some of its surrounding notation.
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Set membership

The symbol ‘∈’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

x ∈ A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise. Thus, for instance, π ∈ R is
a true statement, while

√
−1 ∈ R is not. The negation of the set

membership predicate is written by means of the symbol ‘ 6∈’; so that√
−1 6∈ R is a true statement, while π 6∈ R is not.

Remark

The notation
∀x ∈ A.P(x)

∃x ∈ A.P(x)
is shorthand for

∀x.
(
x ∈ A=⇒ P(x)

)

∃x. x ∈ A & P(x)
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Defining sets

The conventional way to write down a finite set (i.e. a set with a finite
number of elements) is to list its elements in between curly brackets.
For instance,

the set

of even primes

of booleans

[−2..3]

is

{ 2 }

{ true , false }

{−2 , −1 , 0 , 1 , 2 , 3 }

Definining huge finite sets (such as Zgoogolplex) and infinite sets (such
as the set of primes) in the above style is impossible and requires
a technique known as set comprehensiona (or set-builder notation),
which we will look at next.

aBtw, many programming languages provide a list comprehension construct

modelled upon set comprehension.
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Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Here, given an already constructed set A and a statement P(x) for
the variable x ranging over the set A, we will be using either of the
following set-comprehension notations

{ x ∈ A | P(x) } , { x ∈ A : P(x) }

for defining the set consisting of all those elements a of the set A
such that the statement P(a) holds. In other words, the following
statement is true

∀a.
(
a ∈ { x ∈ A | P(x) } ⇐⇒

(
a ∈ A & P(a)

) )

by definition.
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Example 52

1. N = {n ∈ Z | n ≥ 0 }

2. N+ = {n ∈ N | n ≥ 1 }

3. Q = { x ∈ R | ∃p ∈ Z.∃q ∈ N+. x = p/q }

4. Zgoogolplex = {n ∈ N | n < googolplex }
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by
set-comprehension as follows

D(n) =
{
d ∈ N : d | n

}
.

Example 53

1. D(0) = N

2. D(1224) =





1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 54,

68, 72, 102, 153, 204, 306, 612, 918, 1224





Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n) =
{
d ∈ N : d | m & d | n

}
.

Example 54

CD(1224, 660) = { 1, 2, 3, 4, 6, 12 }

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Proposition 55 For all natural numbers l, m, and n,

1. CD(l · n,n) = D(n), and

2. CD(m,n) = CD(n,m).
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Lemma 56 (Key Lemma) Let m and m ′ be natural numbers and
let n be a positive integer such that m ≡ m ′ (mod n). Then,

CD(m,n) = CD(m ′, n) .

YOUR PROOF:
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MY PROOF: Let m and m ′ be natural numbers, and let n be a
positive integer such that

(i) m ≡ m ′ (mod n) .

We will prove that for all positive integers d,

d | m & d | n ⇐⇒ d | m ′ & d | n .

(=⇒) Let d be a positive integer that divides both m and n. Then,

d | (k · n+m) for all integers k

and since, by (i), m ′ = k0 · n+m for some integer k0, it follows that
d | m ′. As d | n by assumption, we have that d divides both m ′ and
n.

(⇐=) Analogous to the previous implication.
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Corollary 57

1. For all natural numbers m and positive integers n,

CD(m,n) = CD
(
rem(m,n), n

)
.

2. For all natural numbers m and n,

CD(m,n) = CD
(
q− p, p

)

where p = min(m,n) and q = max(m,n).

YOUR PROOF:
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MY PROOF: The claim follows from the Key Lemma 56 (on
page 185). Item (1) by Corollary 47 (on page 165), and
item (2) because l ≡ l− k (mod k) for all integers k and l.
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Putting previous knowledge together we have:

Lemma 58 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
(
n, rem(m,n)

)
, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
(
n, rem(m,n)

)
, otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid ′s Algorithm
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gcd (with divalg)

fun gcd( m , n )

= let

val ( q , r ) = divalg( m , n )

in

if r = 0 then n

else gcd( n , r )

end
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gcd (with div)

fun gcd( m , n )

= let

val q = m div n

val r = m - q*n

in

if r = 0 then n

else gcd( n , r )

end
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Example 59 (gcd(13, 34) = 1)

gcd(13, 34) = gcd(34, 13)

= gcd(13, 8)

= gcd(8, 5)

= gcd(5, 3)

= gcd(3, 2)

= gcd(2, 1)

= 1
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Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m and n, gcd(m,n) is the greatest
common divisor of m and n in the sense that the following two
properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily
follows that d | gcd(m,n).

YOUR PROOF:
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MY PROOF: To establish the termination of gcd on a pair of positive
integers (m,n) we consider and analyse the computations arising
from the call gcd(m,n). For intuition, these can be visualised as on
page 195.

As a start, note that, if m < n, the computation of gcd(m,n) reduces
in one step to that of gcd(n,m); so that it will be enough to establish
the termination of gcd on pairs where the first component is greater
than or equal to the second component.
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gcd(m,n)

n|m

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣
m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗

n gcd(n, r)

r|n

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣♣♣

n = q ′ · r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)
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Consider then gcd(m,n) where m ≥ n. We have that gcd(m,n)

either terminates in one step, whenever n | m; or that, whenever
m = q · n+ r with q > 0 and 0 < r < n, it reduces in one step to
a computation of gcd(n, r).

In this latter case, the passage of computing gcd(m,n) by means of
computing gcd(n, r) maintains the invariant of having the first com-
ponent greater than or equal to the second one, but also strictly
decreases the second component of the two pairs. As this process
cannot go on for ever while maintaining the second components of
the recurring pairs positive, the recursive calls must eventually stop
and the overall computation terminate (in a number of steps less
than or equal the minimum input of the pair).
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The previous analysis can be refined further to get a nice upper
bound on the computation of gcds. For fun, we look into this next.

Note that, for m ≥ n, a call of gcd on (m,n) terminates in at most 2
steps, or in 2 steps reduces to a computation of gcd(r, r ′) for a pair
of positive integers (r, r ′) such that

max(m,n) > r = max(r, r ′) > 0 .

For n > m, the same occurs with an extra computation step. As
before, this process cannot go on for ever and the gcd algorithm
necessarily terminates.
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In the case that

m = q · n+ r for q > 0 and 0 < r < n (†)
one has that

m = q · n+ r < 2 · q · n = 2 · (m− r)

and hence that

r < m/2 .

Thus, after 2 steps in the computation of gcd on inputs (m,n)

satisfying (†), the first (and biggest) component m of the pair being
computed is reduced to more than 1/2 its size. Since this pattern
recurs until termination, the total number of steps in the
computation of gcd on a pair (m,n) is bounded by

1+ 2 · log
(
max(m,n)

)
.
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Hence, the time complexity of the gcd is at most of logarithmic
order.a

As for the characterisation of gcd(m,n), for positive integers m and
n, by means of the properties (i) and (ii) stated in the theorem, we
note first that it follows from Lemma 58 (on page 189) that

CD(m,n) = D
(
gcd(m,n)

)
;

that is, in other words,

for all positive integers d,

d | m & d | n ⇐⇒ d | gcd(m,n)

which is a single statement equivalent to the statements (i) and (ii)

together.
aLet me note for the record that a more precise complexity analysis involving

Fibonacci numbers is also available. (See Workout 19.3a on page 320.)
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NB Euclid’s Algorithm (on page 189) and Theorem 60 (on page
193) provide two views of the gcd: an algorithmic one and a math-
ematical one. Both views are complementary, neither being more
important than the other, and a proper understanding of gcds should
involve both. As a case in point, we will see that some properties
of gcds are better approached from the algorithmic side (e.g. linear-
ity) while others from the mathematical side (e.g. commutativity and
associativity).

This situation arises as a general pattern in interactions between
computer science and mathematics.
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Fractions in lowest terms

Here’s our solution to the problem raised on page 145.

fun lowterms( m , n )

= let

val gcdval = gcd( m , n )

in

( m div gcdval , n div gcdval )

end

Homework Do Workout 15.7 on page 313.
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Some fundamental properties of gcds

Corollary 61 Let m and n be positive integers.

1. For all integers k and l,

gcd(m,n) | (k ·m+ l · n) .

2. If there exist integers k and l, such that k · m + l · n = 1 then
gcd(m,n) = 1.

YOUR PROOF:
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MY PROOF:

(1) Follows from the fact that gcd(m,n) | m and gcd(m,n) | n, for
all positive intergers m and n, and from general elementary
properties of divisibility, for which see Workout 7.4 (on page 298).

(2) Because, by the previous item, one would have that the gcd

divides 1.
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Lemma 62 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
(
l, gcd(m,n)

)
= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

YOUR PROOF:

aAka (Distributivity).
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MY PROOF: Let l, m, and n be positive integers.

(1) In a nutshell, the result follows because CD(m,n) = CD(n,m).

Let me however give you a detailed argument to explain a basic,
and very powerful argument, for proving properties of gcds (and in
fact of any mathematical structure similarly defined, by what in the
mathematical jargon is known as a universal property ).

Theorem 60 (on page 193) tells us that gcd(m,n) is the positive
integer precisely characterised by the following universal property :

∀ positive integers d. d | m & d | n ⇐⇒ d | gcd(m,n) . (†)
Now, gcd(n,m) | m and gcd(n,m) | n; hence by (†) above
gcd(n,m) | gcd(m,n). An analogous argument (with m and n

interchanged everywhere) shows that gcd(m,n) | gcd(n,m).
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Since gcd(m,n) and gcd(n,m) are positive integers that divide
each other, then they must be equal.

(2) In a nutshell, the result follows because both gcd
(
l, gcd(m,n)

)

and gcd(gcd(l,m), n) are the greatest common divisor of the triple
of numbers (l,m,n). But again I’ll give a detailed proof by means
of the universal property of gcds, from which we have that for all
positive integers d,

d | gcd
(
l, gcd(m,n)

)

⇐⇒ d | l & d | gcd(m,n)

⇐⇒ d | l & d | m & d | n

⇐⇒ d | gcd(l,m) & d | n

⇐⇒ d | gcd(gcd(l,m), n)
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It follows that both gcd
(
l, gcd(m,n)

)
and gcd(gcd(l,m), n) are

positive integers dividing each other, and hence equal.a

(3) One way to prove the result is to note that the linearity of
divalg, for which see Workout 13.4 (on page 307), transfers to
Euclid’s gcd Algorithm. This is because

◮ every computation step

gcd(m,n) = n,
which happens when rem(m,n) = 0

corresponds to a computation step

gcd(l ·m, l · n) = l · n,
which happens when l · rem(m,n) = rem(l ·m, l · n) = 0

i.e. when rem(m,n) = 0

aBtw, though I have not, one may try to give a proof using Euclid’s Algorithm.

If you try and succeed, please let me know.
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while

◮ every computation step

gcd(m,n) = gcd
(
n, rem(m,n)

)
,

which happens when rem(m,n) 6= 0

corresponds to a computation step

gcd(l ·m, l · n) = gcd(l · n, rem(l ·m, l · n))
= gcd

(
l · n, l · rem(m,n)

)
,

which happens when l · rem(m,n) = rem(l ·m, l · n) 6= 0,
i.e. when rem(m,n) 6= 0
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Thus, the computation of gcd(m,n) leads to a sequence of calls to
gcd with

inputs (m,n) ,
(
n, rem(m,n)

)
, . . . , (r, r ′) , . . .

and output gcd(m,n)

if, and only if, the computation of gcd(l ·m, l · n) leads to a
sequence of calls to gcd with

inputs (l ·m, l · n) ,
(
l · n, l · rem(m,n)

)
, . . . , (l · r, l · r ′) , . . .

and output l · gcd(m,n) .

Finally, and for completeness, let me also give a non-algorithmic
proof of the result. We show the following in turn:

(i) l · gcd(m,n) | gcd(l ·m, l · n).

(ii) gcd(l ·m, l · n) | l · gcd(m,n).
— 209 —

For (i), since gcd(m,n) | m & gcd(m,n) | n we have that
l · gcd(m,n) | l ·m & l · gcd(m,n) | l · n and hence that
l · gcd(m,n) | gcd(l ·m, l · n).

As for (ii): we note first that since l | l ·m and l | l · n we have that
l | gcd(l ·m, l · n) and so that there exists a positive integer, say k0,
such that gcd(l ·m, l · n) = l · k0. But then, since
l · k0 = gcd(l ·m, l · n) | l ·m & l · k0 = gcd(l ·m, l · n) | l · n we
have that k0 | m & k0 | n, and so that k0 | gcd(m,n). Finally, then,
gcd(l ·m, l · n) = l · k0 | l · gcd(m,n).
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Go to Workout 15
on page 311
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Euclid ′s Theorem

Theorem 63 For positive integers k, m, and n, if k | (m · n) and
gcd(k,m) = 1 then k | n.

YOUR PROOF:
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MY PROOF: Let k, m, and n be positive integers, and assume that

(i) k | (m · n) and (ii) gcd(k,m) = 1 .

Using (i), let l be an integer such that

(iii) k · l = m · n .

In addition, using (ii) and the linearity of gcd (Lemma 62.3 on
page 204), we have that

n = gcd(k,m) · n , by (ii)

= gcd(k · n,m · n) , by linearity

= gcd(k · n, k · l) , by (iii)

= k · gcd(n, l) , by linearity

and we are done.
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Corollary 64 (Euclid’s Theorem) For positive integers m and n,
and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem (on page 122)
follows as a corollary of the first part and Euclid’s Theorem.

YOUR PROOF OF Theorem 36.2 (on page 122):
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MY PROOF OF Theorem 36.2 (on page 122): Let p be a prime and
i a natural number that is not a multiple of p. By the first part of
Fermat’s Little Theorem, we know that p | i · (ip−1 − 1). It thus
follows by Euclid’s Theorem (Corollary 64 on the previous page) that
p | (ip−1 − 1).
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Fields of modular arithmetic

Corollary 65 For prime p, every non-zero element i of Zp has ip−2

as multiplicative inverse. Hence, Zp is what in the mathematical
jargon is referred to as a field.

We can however say a bit more, because an extension of Euclid’s
gcd Algorithm gives both a test for checking the existence of and an
efficient method for finding multiplicative inverses in modular arith-
metic.
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Go to Workout 16
on page 315
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Extended Euclid ′s Algorithm

Example 66 (egcd(34, 13) =
(
(5,−13), 1

)
)

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1
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gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
︷ ︸︸ ︷
(2 · 34+ (−5) · 13) −1·

︷ ︸︸ ︷
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13
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Linear combinations

Definition 67 An integer r is said to be a linear combination of a
pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the
coefficients of the linear combination, such that

[
s t

]
·
[
m

n

]
= r ;

that is

s ·m+ t · n = r .
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Remark Note that the ways in which an integer can be expressed
as a linear combination is infinite; as, for all integers m, n and r, s,
t,
we have that

[
s t

]
·
[
m

n

]
= r

iff

for all integers k,
[
(s+ k · n) (t− k ·m)

]
·
[
m

n

]
= r .
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Theorem 68 For all positive integers m and n,

1. gcd(m,n) is a linear combination of m and n, and

2. a pair lc1(m,n), lc2(m,n) of integer coefficients for it,
i.e. such that

[
lc1(m,n) lc2(m,n)

]
·
[
m

n

]
= gcd(m,n) ,

can be efficiently computed.

The proof of Theorem 68, which is left as an exercise for the
interested reader, is by means of the Extended Euclid’s Algorithm
egcd on page 224 relying on the following elementary properties
of linear combinations.
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Proposition 69 For all integers m and n,

1.
[
1 0

]
·
[
m

n

]
= m &

[
0 1

]
·
[
m

n

]
= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,
[
s1 t1

]
·
[
m

n

]
= r1 &

[
s2 t2

]
·
[
m

n

]
= r2

implies
[
s1 + s2 t1 + t2

]
·
[
m

n

]
= r1 + r2 ;

3. for all integers k and s, t, r,
[
s t

]
·
[
m

n

]
= r implies

[
k · s k · t

]
·
[
m

n

]
= k · r .
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egcd (with divalg)

fun egcd( m , n )

= let

fun egcditer( ((s1,t1),r1) , lc as ((s2,t2),r2) )

= let

val (r,q) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then lc

else egcditer( lc , ((s1-q*s2,t1-q*t2),r) )

end

in

egcditer( ((1,0),m) , ((0,1),n) )

end
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egcd (with div)

fun egcd( m , n )

= let

fun egcditer( ((s1,t1),r1) , lc as ((s2,t2),r2) )

= let

val q = r1 div r2 ; val r = r1 - q*r2

in

if r = 0 then lc

else egcditer( lc , ((s1-q*s2,t1-q*t2),r) )

end

in

egcditer( ((1,0),m) , ((0,1),n) )

end
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Example 70 (egcd(13, 34) = ((−13, 5), 1))

egcd(13, 34) = egcditer
(
((1, 0), 13) , ((0, 1), 34)

)

= egcditer
(
((0, 1), 34) , ((1, 0), 13)

)

= egcditer
(
((1, 0), 13) , ((−2, 1), 8)

)

= egcditer
(
((−2, 1), 8) , ((3,−1), 5)

)

= egcditer
(
((3,−1), 5) , ((−5, 2), 3)

)

= egcditer
(
((−5, 2), 3) , ((8,−3), 2)

)

= egcditer
(
((8,−3), 2) , ((−13, 5), 1)

)

=
(
(−13, 5) , 1

)
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fun gcd( m , n ) = #2( egcd( m , n ) )

fun lc1( m , n ) = #1( #1( egcd( m , n ) ) )

fun lc2( m , n ) = #2( #1( egcd( m , n ) ) )

Proposition 71 For all distinct positive integers m and n,

lc1(m,n) = lc2(n,m) .

— 227 —



Another characterisation of gcds

Theorem 72 For all positive integers m and n, gcd(m,n) is the
least positive linear combination of m and n.

YOUR PROOF:
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MY PROOF: Let m and n be arbitrary positive integers. By
Theorem 68.1 (on page 222), gcd(m,n) is a linear combination of
m and n. Furthermore, since it is positive, by Corollary 61.1 (on
page 202), it is the least such.

— 229 —

Multiplicative inverses in modular arithmetic

Corollary 73 For all positive integers m and n,

1. n · lc2(m,n) ≡ gcd(m,n) (mod m), and

2. whenever gcd(m,n) = 1,
[
lc2(m,n)

]
m

is the multiplicative inverse of [n]m in Zn .

Remark For every pair of positive integers m and n, we have that
[n]m has a multiplicative inverse in Zm iff gcd(m,n) = 1.
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Go to Workout 17
on page 316
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Diffie-Hellman cryptographic method

Shared secret key

A

a 

[ca]p = α

c, p
B

b 

β = [cb]p
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Diffie-Hellman cryptographic method

Shared secret key

A

a 

[ca]p = α

β 

k = [βa]p

c, p
B

b 

β = [cb]p

α 

[αb]p = k

/.-,()*+α
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗ /.-,()*+β
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
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Key exchange

Lemma 74 Let p be a prime and e a positive integer with
gcd(p − 1, e) = 1. Define

d =
[
lc2(p− 1, e)

]
p−1

.

Then, for all integers k,

(ke)d ≡ k (mod p) .

YOUR PROOF:
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MY PROOF: Let p, e, and d be as stated in the lemma. Then,
e · d = 1+ c · (p − 1) for some natural number c and hence, by
Fermat’s Little Theorem (Theorem 36 on page 36),

ke·d = k · kc·(p−1) ≡ k (mod p)

for all integers k not multiple of p. For integers k multiples of p
the result is trivial.
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A

(eA, dA)

0 ≤ k < p 

[keA]p = m1

m2 

[m2
dA]p = m3

p
B

(eB, dB)

m1 

m2 = [m1
eB]p

m3 

[m3
dB]p = k

GFED@ABCm1
//GFED@ABCm2

oo GFED@ABCm3
//
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Go to Workout 18
on page 318
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Mathematical structure

Topics

Mathematical induction: Principles of Induction and Strong
Induction. Binomial Theorem and Pascal’s Triangle. Fermat’s Little
Theorem. Fundamental Theorem of Arithmetic. Infinity of primes.
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Complementary reading:

◮ Chapters 1, 24, 25, 30, and 31 of How to Think Like a
Mathematician by K. Houston.

◮ Chapters 4 to 7 of Mathematics for Computer Science by
E. Lehman, F. T. Leighton, and A. R. Meyer.

◮ Chapters 4 to 7 of How to Prove it by D. J. Velleman.
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Objectives

◮ To understand and be able to proficiently use the Principle of
Mathematical Induction in its various forms.
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Mathematical induction

We have mentioned in passing on page 149 that the natural
numbers are generated from zero by succesive increments. This is
in fact the defining property of the set of natural numbers, and
endows it with a very important and powerful reasoning principle,
that of Mathematical Induction, for establishing universal properties
of natural numbers.

NB When thinking about mathematical induction it is most
convenient and advisable to have in mind their definition in ML:

datatype

N = zero | succ of N
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Principle of Induction

Let P(m) be a statement for m ranging over the set of natural
numbers N.
If

◮ the statement P(0) holds, and

◮ the statement

∀n ∈ N.
(
P(n) =⇒ P(n+ 1)

)

also holds

then

◮ the statement

∀m ∈ N. P(m)

holds.
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NB By the Principle of Induction, thus, to establish the statement

∀m ∈ N. P(m)

it is enough to prove the following two statements:

1. P(0), and

2. ∀n ∈ N.
(
P(n) =⇒ P(n+ 1)

)
.
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The induction proof strategy:

To prove a goal of the form

∀m ∈ N. P(m)

First prove

P(0) ,

and then prove

∀n ∈ N.
(
P(n) =⇒ P(n+ 1)

)
.
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Proof pattern:
In order to prove that

∀m ∈ N. P(m)

1. Write: Base case: and give a proof of P(0).

2. Write: Inductive step: and give a proof that

for all natural numbers n, P(n) implies P(n+ 1) .

3. Write: By the Principle of Induction, we conclude that

P(m) holds for all natural numbers m.
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A template for induction proofs:

1. State that the proof uses induction.

2. Define an appropriate property P(m) for m ranging over the set
of natural numbers. This is called the induction hypothesis.

3. Prove that P(0) is true. This is called the base case.

4. Prove that P(n) =⇒ P(n+ 1) for every natural number n. This
is called the inductive step.

5. Invoke the principle of mathematical induction to conclude that
P(m) is true for all natural numbers m.

NB Always be sure to explicitly label the induction hypothesis, the
base case, and the inductive step.

— 245 —

Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
∑n

k=0

(
n
k

)
· xn−k · yk .

YOUR PROOF:
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MY PROOF SKETCH: We prove

∀m ∈ N. P(m)

for

P(m) the statement (x+ y)m =
∑m

k=0

(
m
k

)
· xm−k · yk

by the Principle of Induction.

Base case: P(0) holds because

(x+ y)0 = 1 =
(
0
0

)
· x0 · y0 =

∑0
k=0

(
0
k

)
· x0−k · yk .
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Inductive step: We need prove that, for all natural numbers n, P(n)
implies P(n+ 1). To this end, let n be a natural number and assume
P(n); that is, assume that the following Induction Hypothesis

(IH) (x+ y)n =
∑n

k=0

(
n
k

)
· xn−k · yk

holds.

We will now proceed to show that

(x+ y)n+1 =
∑n+1

k=0

(
n+1
k

)
· x(n+1)−k · yk (†)

follows.
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We first try unfolding the left-hand side of (†) on the previous page:

(x+ y)n+1 = (x+ y)n · (x+ y)

=
(∑n

k=0

(
n
k

)
· xn−k · yk

)
· (x+ y)

, by the Induction Hypothesis (IH)

=
(∑n

k=0

(
n
k

)
· xn−k+1 · yk

)
+
(∑n

k=0

(
n
k

)
· xn−k+1 · yk+1

)

Unfortunately, we seem to be kind of stuck here. So, we next try
unfolding the right-hand side of (†):

∑n+1
k=0

(
n+1
k

)
· x(n+1)−k · yk

in the hope that this will help us bridge the gap. But, how can we
make any progress? The clue seems to be in relating the coeffi-
cients

(
n
k

)
and

(
n+1
k

)
that appear in the above expressions.
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At this point you may know about Pascal’s triangle (see, for exam-
ple, page 254), and get unstuck. Otherwise, you can reconstruct
Pascal’s rule by counting! Let’s see how.

The natural number
(
n+1
k

)
counts the number of ways in which k

objects can be chosen amongst n + 1 objects, say o1, . . . , on, on+1.
One can count these by looking at two cases: (i) when the object
on+1 is not chosen, plus (ii) when the object on+1 is chosen. Under
case (i), we have

(
n
k

)
possible ways to choose the k objects amongst

o1, . . . , on; while, under case (ii) we have
(

n
k−1

)
possible ways to

choose the remaining k − 1 objects amongst o1, . . . , on. Hence, we
conjecture that

(
n+1
k

)
=

(
n
k

)
+
(

n
k−1

)
. (‡)

— 250 —



We have a choice now: either we prove the conjecture and then
check whether it is of any help for our problem at hand; or we as-
sume it for the time being, push on, and, if it is what we need, prove
it to leave no gaps in our reasoning. For reasons that will become
apparent, I will here take the second route, and calculate:
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∑n+1
k=0

(
n+1
k

)
· x(n+1)−k · yk

= xn+1 +
∑n

k=1

(
n+1
k

)
· xn−k+1 · yk + yn+1

= xn+1 +
∑n

k=1

((
n
k

)
+
(

n
k−1

))
· xn−k+1 · yk + yn+1

, provided the conjecture (‡) is true!

= xn+1 +
∑n

k=1

(
n
k

)
· xn−k+1 · yk +

∑n
k=1

(
n

k−1

)
· xn−k+1 · yk + yn+1

=
∑n

k=0

(
n
k

)
· xn−k+1 · yk +

∑n
j=0

(
n
j

)
· xn−j · yj+1

=
(∑n

k=0

(
n
k

)
· xn−k · yk

)
· x +

(∑n
j=0

(
n
j

)
· xn−j · yj

)
· y

=
(∑n

i=0

(
n
i

)
· xn−i · yi

)
· (x+ y)

= (x+ y)n · (x+ y) , by the Induction Hypothesis (IH)

= (x+ y)n+1
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We have now established the inductive step, provided that we can
prove the conjecture; and you should move onto this next:

Homework

1. Prove that, for all positive integers m and k such that 1 ≤ k ≤ m,
(
m+1
k

)
=

(
m
k

)
+
(

m
k−1

)
.

2. Turn the above scratch work into a proof.

Btw Note that our proof works in any commutative semiring!
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THEOREM OF THE DAY
Pascal’s Rule For any positive integers n and k,

(
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

In words, this is read as “n + 1 choose k = n choose k + n choose k − 1”, i.e. the number of

choices if you must select k objects from n + 1 is the same as the number of choices if

you are selecting from n objects and have an initial choice of whether to take k or

k − 1. The rule defines what is usually called Pascal’s triangle, presented as

shown on the right. However, this is a misnomer for two reasons. Firstly,

it isn’t a triangle at all, unless font size decreases exponentially with

increasing row number; it is more like a Chinese hat!

... which is appropriate enough because, secondly, this triangle and rule were known to the Chinese scholar Jia Xian, six

hundred years before Pascal. Aligning the rows of the triangle on the left (as shown on the left) seems to make

much better sense, typographically, computationally and combinatorially. A well-known relationship with

the Fibonacci series, for instance, becomes immediately apparent as a series of diagonal sums.

Rows are numbered from zero;

cells in each row are likewise

numbered from zero. Row zero

consists of
(

0

0

)
= 1; the n-th row

starts with
(

n

0

)
= 1.

The work of Jia Xian has passed to us through the commentary of Yang Hui

(1238-1298) and Pascal’s triangle is known in China as ‘Yang Hui’s trian-

gle’. In Iran, it is known as the ‘Khayyám triangle’ after Omar Khayyám

(1048-1131), although it was known to Persian, and Indian, scholars in the

tenth century. Peter Cameron cites Robin Wilson as dating Western study

of Pascal’s triangle as far back as the Majorcan theologian Ramon Llull

(1232–1316).

Web link: ptri1.tripod.com. See the wikipedia entry on nomenclature.

Further reading: Pascal’s Arithmetical Triangle by A.W.F. Edwards, Johns Hop-

kins University Press, 2002. The Cameron citation appears in Combinatorics: Topics, Techniques, Algorithms, by Peter J. Cameron, CUP, 1994, section 3.3.

Created by Robin Whitty for www.theoremoftheday.org
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Fermat ′s Little Theorem

The argument given for the Many Dropout Lemma (Proposition 35
on page 120) that we used to prove the first part of Fermat’s Little
Theorem (Theorem 36.1 on page 122) contains an “iteration”. Such
arguments are, typically, induction proofs in disguise. Here, to
illustrate the point, I’ll give a proof of the result by the Principle of
Induction.

Theorem 36.1 For all natural numbers i and primes p,

ip ≡ i (mod p) .

YOUR PROOF:
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MY PROOF: Let p be a prime. We prove

∀ i ∈ N. P(i)

for

P(i) the statement ip ≡ i (mod p)

by the Principle of Induction.

Base case: P(0) holds because

0p = 0 ≡ 0 (mod p) .
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Inductive step: We need prove that, for all natural numbers i, P(i)
implies P(i+ 1). To this end, let i be a natural number and assume
P(i); that is, assume that the following Induction Hypothesis

(IH) ip ≡ i (mod p)

holds.

Then,

(i+ 1)p = ip + p ·∑p−1
k=1

(p−1)!
(p−k)!·k! · ik + 1

≡ ip + 1 (mod p) , as (p−1)!
(p−k)!·k! ∈ N

≡ i+ 1 (mod p) , by Induction Hypothesis (IH)

and we are done.
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Go to Workout 19
on page 319
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Two further induction techniques

Technique 1. Let P(m) be a statement for m ranging over the
natural numbers greater than or equal a fixed natural number ℓ.

Let us consider the derived statement

Pℓ(m) = P(ℓ+m)

for m ranging over the natural numbers.

We are now interested in analysing and stating the Principle of
Induction associated to the derived Induction Hypothesis Pℓ(n)

solely in terms of the original statements P(n).
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To do this, we notice the following logical equivalences:

◮ Pℓ(0) ⇐⇒ P(ℓ)

◮ ∀n ∈ N.
(
Pℓ(n) =⇒ Pℓ(n+ 1)

)

⇐⇒ ∀n ≥ ℓ in N.
(
P(n) =⇒ P(n+ 1)

)

◮ ∀m ∈ N. Pℓ(m) ⇐⇒ ∀m ≥ ℓ in N. P(m)
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Replacing the left-hand sides by their equivalent right-hand sides in
the Principle of Induction with Induction Hypothesis Pℓ(m) yields
what is known as the

Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number ℓ.
If

◮ P(ℓ) holds, and

◮ ∀n ≥ ℓ in N.
(
P(n) =⇒ P(n+ 1)

)
also holds

then

◮ ∀m ≥ ℓ in N. P(m) holds.
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Proof pattern:
In order to prove that

∀m ≥ ℓ in N. P(m)

1. Write: Base case: and give a proof of P(ℓ).

2. Write: Inductive step: and give a proof that for all natural
numbers n greater than or equal ℓ, P(n) implies P(n+ 1).

3. Write: By the Principle of Induction from basis ℓ, we con-

clude that P(m) holds for all natural numbers m greater

than or equal ℓ.
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Technique 2. Let P(m) be a statement for m ranging over the
natural numbers greater than or equal a fixed natural number ℓ.

Let us consider the derived statement

P#(m) = ∀k ∈ [ℓ..m]. P(k)

again for m ranging over the natural numbers greater than or equal
ℓ.

We are now interested in analysing and stating the Principle of
Induction from basis ℓ associated to the derived Induction
Hypothesis P#(n) solely in terms of the original statements P(n).
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To do this, we proceed as before, noticing the following logical
equivalences:

◮ P#(ℓ) ⇐⇒ P(ℓ)

◮
(
P#(n) =⇒ P#(n+ 1)

)

⇐⇒
( (

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

◮
(
∀m ≥ ℓ in N. P#(m)

)
⇐⇒

(
∀m ≥ ℓ in N. P(m)

)
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Replacing the left-hand sides by their equivalent right-hand sides in
the Principle of Induction from basis ℓ with Induction Hypothesis
P#(m) yields what is known as the

Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number ℓ.
If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
( (

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.
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Proof pattern:
In order to prove that

∀m ≥ ℓ in N. P(m)

1. Write: Base case: and give a proof of P(ℓ).

2. Write: Inductive step: and give a proof that for all natural
numbers n ≥ ℓ, if P(k) holds for all ℓ ≤ k ≤ n then so
does P(n+ 1).

3. Write: By the Principle of Strong Induction, we conclude

that P(m) holds for all natural numbers m greater than

or equal ℓ.
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Fundamental Theorem of Arithmetic

Every positive integer is expressible as the product of a
unique finite sequence of ordered primes.

Proposition 75 Every positive integer greater than or equal 2 is a
prime or a product of primes.

YOUR PROOF:
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MY PROOF: Let P(m) be the statement:

Either m is a prime or a product of primes .

We prove

∀m ≥ 2 in N. P(m)

by the Principle of Strong Induction (from basis 2).

Base case: P(2) holds because 2 is a prime.
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Inductive step: We need prove that for all natural numbers n ≥ 2,

If P(k) for all natural numbers 2 ≤ k ≤ n, then P(n+ 1) .

To this end, let n ≥ 2 be an arbitrary natural number, and assume
the following Strong Induction Hypothesis

(SIH)
for all natural numbers 2 ≤ k ≤ n,

either k is prime or a product of primes .

We will now prove that

either n+ 1 is a prime or a product of primes . (†)

by cases (see page 105).

— 269 —

If n+ 1 is a prime, then of course (†) holds. Now suppose that n+ 1

is composite. Hence, it is the product of natural numbers p and q in
the integer interval [2..n]. Since, by the Strong Induction Hypothesis
(SIH), both p and q are either primes or a product of primes, so is
n+ 1 = p · q; and (†) holds.

By the Principle of Strong Induction (from basis 2), we conclude that
every natural number greater than or equal 2 is either a prime or a
product of primes.

— 270 —



Theorem 76 (Fundamental Theorem of Arithmetic) For every
positive integer n there is a unique finite ordered sequence of
primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
∏

(p1, . . . , pℓ) .

NB For ℓ = 0, the sequence is empty and
∏

( ) = 1; for ℓ = 1,∏
(p1) = p1; and, for ℓ ≥ 2,

∏
(p1, . . . , pℓ) = p1 · . . . · pℓ.

YOUR PROOF:
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MY PROOF: Since, by the previous proposition, every number
greater than or equal 2 is a prime or a product of primes, it can
either be expressed as

∏
(p) for a prime p or as

∏
(p1, . . . , pℓ) with

ℓ ≥ 2 for a finite ordered sequence of primes p1, . . . , pℓ. As for the
number 1, it can uniquely be expressed in this form as the product∏

( ) of the empty sequence ( ).

We are thus left with the task of showing that for n ≥ 2 in N, such
representations are unique.
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To this end, we will establish that

for all ℓ, k ≥ 1 in N, and for all finite ordered sequences
of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),
if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

(†)

Let (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk) with ℓ, k ≥ 1 in N, be two
arbitrary finite ordered sequences of primes, and assume that∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk).

By Euclid’s Theorem (Corollary 64 on page 214), since p1 divides∏
(p1, . . . , pℓ) =

∏
(q1, . . . , qk) it follows that it divides, and hence

equals, some qi for i ∈ [1..k]; so that q1 ≤ p1. Analogously, one
argues that p1 ≤ q1; so that p1 = q1.
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It follows by cancellation that
∏

(p2, . . . , pℓ) =
∏

(q2, . . . , qk), and
by iteration of this argument that pi = qi for all 1 ≤ i ≤ min(ℓ, k).
But, ℓ cannot be greater than k because otherwise one would have∏

(pk+1, . . . , pℓ) = 1, which is absurd. Analogously, k cannot be
greater than ℓ; and we are done.

Btw, my argument above requires an “iteration”, and I have already
mentioned that, typically, these are induction proofs in disguise. To
reinforce this, I will now give an inductive proof of uniqueness.a

aHowever, do have in mind that later on in the course, you will encounter more

Structural Principles of Induction for finite sequences and other such data types.
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Indeed, we consider (†) on page 273 in the form

∀ ℓ ≥ 1 in N. P(ℓ) (‡)

for P(ℓ) the statement

(IH)

for all k ≥ 1 in N, and for all finite ordered sequences
of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),
if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

and prove (‡) by the Principle of Induction (from basis 1).

Base case: Establishing P(1) is equivalent to showing that for all
finite ordered sequences (q1 ≤ · · · ≤ qk) with k ≥ 1 in N, if∏

(q1, . . . , qk) is prime then k = 1; which is the case by definition
of prime number.
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Inductive step: Let ℓ ≥ 1 in N and assume the Induction Hypothesis
P(ℓ).

To prove P(ℓ+ 1), let k ≥ 1 be an arbitrary natural number, and let
(p1 ≤ · · · ≤ pℓ+1) and (q1 ≤ · · · ≤ qk) be arbitrary finite ordered
sequences of primes. In addition, assume that

∏
(p1, . . . , pℓ+1) =

∏
(q1, . . . , qk) .

By arguments as above, it follows that

p1 = q1

and hence that
∏

(p2, . . . , pℓ+1) =
∏

(q2, . . . , qk) .
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Furthermore, note that k > 1; because otherwise the product of the
2 or more primes p1, . . . , pℓ+1 would be a prime, which is absurd.

We have now the finite ordered sequence of primes (p2, . . . , pℓ+1)

of length ℓ and the finite ordered sequence of primes (q2, . . . , qk) of
length (k− 1) ≥ 1 such that

∏
(p2, . . . , pℓ+1) =

∏
(q2, . . . , qk), to

which we may apply the Induction Hypothesis (IH). Doing so, it
follows that ℓ = k− 1 and that pi = qi for all i ∈ [2..ℓ+ 1].

Thus, ℓ+ 1 = k and pi = qi for all i ∈ [1..ℓ + 1]. Hence, P(ℓ+ 1)

holds.
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Homework

1. Argue that the uniqueness of prime factorisation is also a
consequence of the statement

∀ ℓ ≥ 1 in N. P ′(ℓ) (∗)
for P ′(ℓ) the statement a

for all k ≥ ℓ in N, and for all finite ordered sequences
of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),
if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

2. Prove (∗) above by the Principle of Induction (from basis 1),
and compare your proof with mine for (‡).

aNote that the difference with the previously considered Induction Hypothesis

is in the range of k, which here is ≥ ℓ and previously was ≥ 1.
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THEOREM OF THE DAY
The Fundamental Theorem of Arithmetic Every integer greater than one can be expressed uniquely
(up to order) as a product of powers of primes.

Every number corresponds to a unique path (which we may call a fundamental path) plotted on the xy-plane. Starting at (0, 0) we progress

horizontally along the x axis for each prime factor, taking the primes in ascending order. After each prime, we ascend the y axis to represent its

power. Thus:
256 = 28 143 = 11 × 13 (= 111.131) 42706587 = 3.76.112 132187055 = 5.75.112.13.

The end-points of fundamental paths may be called fundamental points. Some well-known conjectures about primes can be expressed in terms

of questions about fundamental points: Goldbach’s conjecture that every even integer greater than 2 is the sum of two primes could be solved if

we knew which points on the line y = 2 were fundamental (the line for 143 shows that 24=11+13, for instance.) The ‘twin primes conjecture’,

that there are infinitely many primes separated by 2 is a question about fundamental points on the line y = 1 (for example, (3, 1) and (5, 1) are

fundamental points.)

Euclid, Book 7, Proposition 30 of the Elements, proves that if a prime divides the product of two numbers then it must divide one or

both of these numbers. This provided a key ingredient of the Fundamental Theorem which then had to wait more than two thousand

years before it was finally established as the bedrock of modern number theory by Gauss, in 1798, in his Disquisitiones Arithmeticae.

Web link: www.dpmms.cam.ac.uk/˜wtg10/FTA.html

Further reading: Elementary Number Theory by Gareth Jones and Mary Jones, Springer, Berlin, 1998.

Created by Robin Whitty for www.theoremoftheday.org
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gcd and min

It is sometimes customary, and very convenient, to restate the
Fundamental Theorem of Arithmetic in the following terms:

Every positive integer n is expressible as
∏

p pnp

where the product is taken over all primes but where the
powers are natural numbers with np 6= 0 for only finitely
many primes p.

Example 77

◮ 1224 = 22 · 32 · 50 · 70 · 110 · 130 · 171 · 190 · . . .

◮ 660 = 22 · 31 · 51 · 70 · 111 · 130 · . . .
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In these terms, gcds are given by taking mins of powers. Precisely,

gcd
(∏

p pmp ,
∏

p pnp
)

=
∏

p pmin(mp,np) . (⋆)

Example 78
gcd(1224, 660)

= 2min(2,2) · 3min(2,1) · 5min(0,1) · 7min(0,0) · 11min(0,1) · 13min(0,0)

· 17min(1,0) · 19min(0,0) · . . .
= 22 · 3
= 12
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Go to Workout 20
on page 321
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Euclid ′s infinitude of primes

Theorem 79 The set of primes is infinite.

YOUR PROOF:
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MY PROOF: We use proof by contradiction. So, suppose that the
set of primes is finite, and let p1, . . . , pℓ with ℓ ∈ N be the collection
of them all. Consider the natural number p = p1 · . . . · pℓ + 1. As p is
not in the list of primes, by the Fundamental Theorem of Arithmetic
(see Proposition 75), it is a product of primes. Thus, there exists a
pi for i ∈ [1..ℓ] such that pi | p; and, since pi | (p1 · · · · · pℓ), we have
that pi divides p−(p1 · . . . ·pℓ) = 1. This is a contradiction. Therefore,
the set of primes is infinite.
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THEOREM OF THE DAY
Euclid’s Infinity of Primes There are infinitely many prime numbers.

Primes are integers greater than 1 which are not areas of rectangles whose sides are both integers greater than 1.

A prime number is an integer greater than one which cannot be divided exactly by any other integer greater than one. Euclid’s proof, well over

two thousand years old, that such numbers form an infinity, is often cited by mathematicians today as the prototype of a beautiful mathematical

argument. Thus, suppose there are just N primes, where N is a positive integer. Then we can list the primes: p1, p2, . . . , pN . Calculate

q = 1 + p1 × p2 × . . . × pN . Now q cannot be prime since it is larger than any prime in our list. But dividing q by any prime in our list leaves

remainder 1, so q cannot be divided exactly by any prime in our list. So it cannot be divided by any integer greater than 1 other than q and is

therefore prime by definition. This contradiction refutes the assertion that there were only N primes. So no such assertion can be made.

Remarks: (1) Euclid’s proof uses the fact that non-divisibility by a prime implies non-divisibility by a non-prime (a composite). This is the

content of Book 7, Proposition 32 of his Elements.

(2) It would be a mistake to think that we always get a new prime directly from q since, for example, 2 × 3 × 5 × 7 × 11 × 13 = 30030 and
1 + 30030 is not prime, being the product of the two prime numbers 59 and 509.

Scant record exists of any such person as Euclid of Alexandria (325–265 BC) having existed. However, the Elements certainly
date from third century BC Alexandria and although Greek mathematics, rooted in geometry, did not recognise the concept of
infinity, this theorem with what is effectively this proof appears as Proposition 20 in Book IX.

Web link: aleph0.clarku.edu/∼djoyce/java/elements/bookIX/propIX20.html. Is 1 prime? Find out here: arxiv.org/abs/1209.2007.

Further reading: Ancient Mathematics (Sciences of Antiquity), by Serafina Cuomo, Routledge, 2001.
Created by Robin Whitty for www.theoremoftheday
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Workout 1
from page 44

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. The product of two even natural numbers is even.

2. The product of an even and an odd natural number is odd.

3. If x > 3 and y < 2 then x2 − 2 · y > 5.
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Workout 2
from page 51

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. Suppose n is a natural number larger than 2, and n is not a
prime number. Then 2 · n+ 13 is not a prime number.

2. If x2 + y = 13 and y 6= 4 then x 6= 3.
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Workout 3
from page 62

1. Characterise those integers d and n such that:

(a) 0 | n,

(b) d | 0.

2. Write an ML function

divides: int * int -> bool

such that, for all integers m and n, divides(m,n) = true iff
m | n holds.
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Note that the function

fn (m,n) => ( n div m ) = 0

will not do.

3. Let n be a natural number. Show that n | n.

— 290 —



Workout 4
from page 65

1. Let i, j be integers and let m be a positive integer. Show that:

(a) i ≡ i (mod m)

(b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

(c) i ≡ j (mod m) =⇒ i2 ≡ j2 (mod m)

2. Find integers i, j, natural numbers k, l, and a positive integer
m for which both i ≡ j (mod m) and k ≡ l (mod m) hold while
ik ≡ jl (mod m) does not.
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3. Find an integer i, natural numbers k, l, and a positive integer m
for which k ≡ l (mod m) holds while ik ≡ il (mod m) does not.

4. Formalise and prove the following statement: A natural number
is a multiple of 3 iff so is the number obtained by summing its
digits. What about multiples of 9? And multiples of 11?
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Workout 5
from page 67

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

1. Prove or disprove that, for an integer n, n2 is even if and only if
n is even.
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2. Show that for all integers d and n the following statements are
equivalent:

(a) d | n.

(b) −d | n.

(c) d | −n.

(d) −d | −n.

3. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n .
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Workout 6
from page 75

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

1. Prove or disprove the following statements.

(a) For real numbers a and b, if 0 < a < b then a2 < b2.

(b) For real numbers a, b, and c with a > b, if a · c ≤ b · c then
c ≥ 0.

2. Prove or disprove that for all natural numbers n, 2 | 2n.
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3. Let P(m) be a statement for m ranging over the natural num-
bers, and consider the derived statement

P#(m) = ∀ integer k. 0 ≤ k ≤ m =⇒ P(k)

again for m ranging over the natural numbers.

Prove the following equivalences:

P#(0) ⇐⇒ P(0)
(
P#(n) =⇒ P#(n+ 1)

)
⇐⇒

(
P#(n) =⇒ P(n+ 1)

)
(
∀m ∈ N. P#(m)

)
⇐⇒

(
∀m ∈ N. P(m)

)
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Workout 7
from page 83

1. Taking inspiration from the proof of Theorem 20 (on page 81),
or otherwise, prove that for all integers n,

30 | n ⇐⇒
(
2 | n & 3 | n & 5 | n

)
.

Can you spot a pattern here? Can you formalise it, test it, and
prove it?

2. Find a counterexample to the statement: For all positive integers
k, m, n, if m | k & n | k then (m · n) | k.
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3. Show that for all integers l, m, n,

l | m & m | n =⇒ l | n .

4. Prove that for all integers d, k, l, m, n,

(a) d | m & d | n =⇒ d | (m+ n),

(b) d | m =⇒ d | k ·m,

(c) d | m & d | n =⇒ d | (k ·m+ l · n).

5. Prove that for all integers i, j, k, l, m, n with m positive and n

nonnegative,

(a) i ≡ j (mod m) & j ≡ k (mod m) =⇒ i ≡ k (mod m)

(b) i ≡ j (mod m) & k ≡ l (mod m) =⇒ i+ k ≡ j+ l (mod m)

(c) i ≡ j (mod m) & k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

(d) i ≡ j (mod m) =⇒ in ≡ jn (mod m)
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Workout 8
from page 97

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. For every real number x, if x > 0 then there is a real number y
such that y(y+ 1) = x.

2. For all real numbers x and y there is a real number z such that
x+ z = y− z.
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3. For all integers x and y there is an integer z such that x + z =

y− z.

4. For every real number x, if x 6= 2 then there is a unique real
number y such that 2y/(y+ 1) = x.

5. The addition of two rational numbers is a rational number.

6. Prove that for all natural numbers p, p1, p2,

(a) min(p, p1 + p2) = min
(
p,min(p, p1) +min(p, p2)

)
, and

(b) min(p, p1 + p2) = min(p, p1) +min
(
p−min(p, p1), p2

)
.
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Workout 9
from page 104

NB The main aim here is for you to practice the analysis and
understanding of mathematical statements (e.g. by isolating the
different components of composite statements), and exercise the
art of presenting a logical argument in the form of a clear proof
(e.g. by following proof strategies and patterns).

1. Prove or disprove that for integers m and n, if m ·n is even, then
either m is even or n is even.
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2. If every pair of people in a group has met, then we will call the
group a club. If every pair of people in a group has not met,
then we will call it a group of strangers.

Prove that every collection of 6 people includes a club of 3
people or a group of 3 strangers.

3. Show that for all integers m and n,

m | n & n | m =⇒ m = n ∨ m = −n .

4. Prove or disprove that for all positive integers k, m, n,

if k | (m · n) then k | m or k | n .

5. Prove that for all integers n, there exist natural numbers i and j

such that n = i2 − j2 iff either n ≡ 0 (mod 4), or n ≡ 1 (mod 4),
or n ≡ 3 (mod 4). [Hint: Recall Proposition 22 (on page 89).]

— 302 —



Workout 10
from page 125

1. Search for “Fermat’s Little Theorem” in YouTube and watch a
video or two about it.

2. Let i and n be positive integers and let p be a prime. Show that
if n ≡ 1 (mod p−1) then in ≡ i (mod p) for all i not multiple of p.

— 303 —

Workout 11
from page 128

Justify the boolean equivalences:

¬
(
P =⇒ Q

)
⇐⇒ P & ¬Q

¬
(
P ⇐⇒ Q

)
⇐⇒ ¬P ⇐⇒ ¬Q

¬
(
P & Q

)
⇐⇒ (¬P) ∨ (¬Q)

¬
(
P ∨ Q

)
⇐⇒ (¬P) & (¬Q)

¬
(
¬P

)
⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P)

(false =⇒ P) ⇐⇒ true
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(
P1 =⇒ (P2 =⇒ Q)

)
⇐⇒

(
(P1 & P2) =⇒ Q

)

(P ⇐⇒ Q) ⇐⇒
(
(P =⇒ Q) & (Q =⇒ P)

)

by means of truth tables, where the truth tables for the boolean
statements are:

P Q P =⇒ Q P ⇐⇒ Q P & Q P ∨ Q ¬P

true true true true true true false

false true true false false true true

true false false false false true

false false true true false false
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Workout 12
from page 141

Give three justifications for the following scratch work:

Before using the strategy
Assumptions Goal

P =⇒ Q
...

After using the strategy
Assumptions Goal

contradiction
...

P , ¬Q
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Workout 13
from page 168

1. Show that for every integer n, the remainder when n2 is divided
by 4 is either 0 or 1.

2. Write the division algorithm in imperative code.

3. Prove that for all natural numbers k, l, and positive integer m,

(a) rem(k+ l,m) = rem
(
k+ rem(l,m),m

)
, and

(b) rem(k · l,m) = rem
(
k · rem(l,m),m

)
.

4. Prove the following Linearity Property of the Division Algorithm:
for all positive integers k, m, n,

divalg(k ·m,k · n) =
(
k · quo(m,n), k · rem(m,n)

)
.
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5. Prove the General Division Theorem for integers:

For every integer m and non-zero integer n, there exists
a unique pair of integers q and r such that 0 ≤ r < |n|,
and m = q · n+ r.

6. Prove that for all positive integers m and n,

(a) n < m =⇒ quo(n,m) = 0 & rem(n,m) = n, and

(b) n ≤ m =⇒ rem(m,n) < m/2.
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Workout 14
from page 175

1. Calculate that 2153 ≡ 53 (mod 153).

Btw, at first sight this seems to contradict Fermat’s Little
Theorem, why isn’t this the case though?

2. Let m be a positive integer.

(a) Prove the associativity of the addition and multiplication
operations in Zm; that is, that for all i, j, k in Zm,

(i+m j) +m k = i+m (j+m k) , and
(i ·m j) ·m k = i ·m (j ·m k) .

[Hint: Use Workout 13.3 on page 307.]
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(b) Prove that the additive inverse of k in Zm is [−k]m.

3. Calculate the addition and multiplication tables, and the
additive and multiplicative inverses tables for Z3, Z6, and Z7.
Can you spot any patterns?

— 310 —



Workout 15
from page 211

1. Write Euclid’s Algorithm in imperative code.

2. Calculate the set CD(666, 330) of common divisors of 666 and
330.

3. Show that for all integers k, the conjuction of the two
statements

◮ k | m & k | n, and
◮ for all positive integers d, d | m & d | n =⇒ d | k

is equivalent to the single statement

for all positive integers d, d | m & d | n ⇐⇒ d | k .
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4. Prove that for all positive integers m and n,

gcd(m,n) = m ⇐⇒ m | n .

5. Prove that, for all positive integers m and n, and integers k and
l,

gcd(m,n) | (k ·m+ l · n) .

6. Prove that, for all positive integers m and n, there exist integers
k and l such that k ·m+ l · n = 1 iff gcd(m,n) = 1.
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7. For all positive integers m and n, define

m ′ = m
gcd(m,n)

and n ′ = n
gcd(m,n)

.

Prove that

(a) m ′ and n ′ are positive integers, and that

(b) gcd(m ′, n ′) = 1.

Conclude that the representation in lowest terms of the fraction
m/n is m ′/n ′.
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8. Use the Key Lemma 56 (on page 185) to show the
correctness of the following algorithm

fun gcd0( m , n )

= if m = n then m

else

let

val p = min(m,n) ; val q = max(m,n)

in

gcd0( p , q - p )

end

for computing the gcd of two positive integers. Give an analysis
of the time complexity.
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Workout 16
from page 217

1. Revisit Theorem 20 (on page 81) and Workout 7.1 (on
page 297) using Euclid’s Theorem (Corollary 64 on page 64) to
give new proofs for them. Can you now state and prove a
general result from which these follow?
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Workout 17
from page 231

1. Write the Extended Euclid’s Algorithm in imperative code.

2. Prove Theorem 68 (on page 222).

3. Let m and n be positive integers with gcd(m,n) = 1. Prove that
for every natural number k,

m | k & n | k =⇒ (m · n) | k .
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4. Prove that for all positive integers l, m, and n, if
gcd(l,m · n) = 1 then gcd(l,m) = 1 and gcd(l, n) = 1.

5. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p)
then either n ≡ 1 (mod p) or n ≡ −1 (mod p).

6. (a) Show that the gcd of two linear combinations of positive
integers m and n is itself a linear combination of m and n.

(b) Argue that the output
(
(s, t), r

)
of calling egcditer with input( (

(s1, t1) , s1 ·m+ t1 · n
)
,
(
(s2, t2) , s2 ·m+ t2 · n

) )

is such that

gcd
(
s1 ·m+ t1 · n , s2 ·m+ t2 · n

)
= r = s ·m+ t · n .
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Workout 18
from page 236

1. Search for “Diffie-Hellman Key Exchange” in YouTube and
watch a video or two about it.
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Workout 19
from page 258

1. State the Principle of Induction for the ML

datatype

N = zero | succ of N

2. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·∑m−1
i=0 2i·n = 2m·n − 1 .

(b) Suppose k is a positive integer that is not prime. Then
2k − 1 is not prime.

— 319 —

3. Recall that the Fibonacci numbers Fn for n ranging over the
natural numbers are defined by F0 = F1 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Prove that gcd(Fn+1, Fn) terminates in n+ 1 steps for all
natural numbers n.

(b) Prove that for all natural numbers n,

Fn · Fn+2 = Fn+1
2 + (−1)n .
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Workout 20
from page 282

1. Equation (⋆) on page 281 gives a Transfer Principle of additive
properties of min as multiplicative properties of gcd. To see this,
prove that for all positive integers m, m1, m2,

(a) gcd(m,m1 ·m2) = gcd
(
m, gcd(m,m1) · gcd(m,m2)

)
, and

(b) gcd(m,m1 ·m2) = gcd(m,m1) · gcd
(

m
gcd(m,m1)

,m2

)
.

[Hint: Use Workout 8.6 on page 300.]

— 321 —

2. Give two proofs of the following proposition

For all positive integers m, n, p, q such that
gcd(m,n) = gcd(p, q) = 1, if m · q = p · n then
m = p and n = q.

respectively using Theorem 63 and Equation (⋆) on page 281.
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