Denotational Semantics

10 lectures for Part II CST 2013/14

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1314/DenotSem/

Topic 1

Introduction

What is this course about?

• General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent).
 - \sim Lectures 2, 3 and 4.
- Compositionality.
- Relationship to computation (e.g. operational semantics).

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* L

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
| $\mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$
 $\mathcal{B}: \mathbf{Bexp} \to (State \to \mathbb{B})$
 $\mathcal{C}: \mathbf{Comm} \to (State \to State)$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ true, false \}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (III)

Semantic function A

$$\mathcal{A}[\![\underline{n}]\!] = \lambda s \in State. n$$

$$\mathcal{A}[\![L]\!] = \lambda s \in State. s(L)$$

$$\mathcal{A}[\![A_1 + A_2]\!] = \lambda s \in State. \mathcal{A}[\![A_1]\!](s) + \mathcal{A}[\![A_2]\!](s)$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$
 $\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$
 $\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$
where $eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

Semantic function C

$$\llbracket \mathbf{skip} \rrbracket = \lambda s \in State.s$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket$, $\llbracket C' \rrbracket$: $State \rightarrow State$ and a function $\llbracket B \rrbracket$: $State \rightarrow \{true, false\}$, we can define

[if B then C else
$$C'$$
] =
$$\lambda s \in State. if([B](s), [C](s), [C'](s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A \rrbracket = \lambda s \in State. \lambda \ell \in \mathbb{L}. if (\ell = L, \llbracket A \rrbracket(s), s(\ell))$$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}$$

Fixed point property of

while $B \operatorname{\mathbf{do}} C$

$$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$$
 where, for each $b: State \to \{true, false\}$ and $c: State \rightharpoonup State$, we define
$$f_{b,c}: (State \rightharpoonup State) \to (State \rightharpoonup State)$$
 as
$$f_{b,c} = \lambda w \in (State \rightharpoonup State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$$

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$?

Approximating $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

$$\begin{split} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^n(\bot) \\ &= \ \lambda s \in State. \\ & \left\{ \begin{array}{l} \llbracket C \rrbracket^k(s) & \text{if } \exists \ 0 \leq k < n. \ \llbracket B \rrbracket (\llbracket C \rrbracket^k(s)) = false \\ & \text{and } \forall \ 0 \leq i < k. \ \llbracket B \rrbracket (\llbracket C \rrbracket^i(s)) = true \end{array} \right. \\ & \uparrow & \text{if } \forall \ 0 \leq i < n. \ \llbracket B \rrbracket (\llbracket C \rrbracket^i(s)) = true \end{split}$$

$$D \stackrel{\mathrm{def}}{=} (State \rightharpoonup State)$$

Partial order □ on D:

```
w\sqsubseteq w' iff for all s\in State, if w is defined at s then so is w' and moreover w(s)=w'(s). iff the graph of w is included in the graph of w'.
```

- Least element $\bot \in D$ w.r.t. \sqsubseteq :
 - \perp = totally undefined partial function
 - = partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

Topic 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

All computable functions are mononotic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is

reflexive: $\forall d \in D. \ d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

anti-symmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

$$x \sqsubseteq x$$

$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq z \\ \hline x \sqsubseteq z \end{array}$$

$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq x \\ \hline x = y & \end{array}$$

Domain of partial functions, $X \longrightarrow Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Monotonicity

ullet A function f:D o E between posets is monotone iff $\forall d,d'\in D.\ d\sqsubseteq d'\Rightarrow f(d)\sqsubseteq f(d').$

$$\frac{x\sqsubseteq y}{f(x)\sqsubseteq f(y)}\quad (f \text{ monotone})$$

Least Elements

Suppose that D is a poset and that S is a subset of D.

An element $d \in S$ is the *least* element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x$$
.

- ullet Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.

Pre-fixed points

Let D be a poset and $f:D \to D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f, if it exists, will be written

It is thus (uniquely) specified by the two properties:

$$f(fix(f)) \sqsubseteq fix(f)$$
 (Ifp1)

$$\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d.$$
 (lfp2)

Proof principle

1.

$$f(fix(f)) \sqsubseteq fix(f)$$

2. Let D be a poset and let $f:D\to D$ be a function with a least pre-fixed point $fix(f)\in D$.

For all $x \in D$, to prove that $f(x) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

Thesis*

All domains of computation are complete partial orders with a least element.

All computable functions are continuous.

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_n$:

$$\forall m \ge 0 . d_m \sqsubseteq \bigsqcup_{n \ge 0} d_n \tag{lub1}$$

$$\forall d \in D . (\forall m \ge 0 . d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n \ge 0} d_n \sqsubseteq d.$$
 (lub2)

A domain is a cpo that possesses a least element, \perp :

$$\forall d \in D . \bot \sqsubseteq d.$$

$$\bot \sqsubseteq x$$

$$\frac{\forall n \ge 0 . x_n \sqsubseteq x}{\bigsqcup_{n \ge 0} x_n \sqsubseteq x} \quad (\langle x_i \rangle \text{ a chain})$$

Domain of partial functions, $X \longrightarrow Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n) \text{, some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

- 1. For $d \in D$, $\bigsqcup_n d = d$.
- 2. For every chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ in D,

$$\bigsqcup_{n} d_{n} = \bigsqcup_{n} d_{N+n}$$

for all $N \in \mathbb{N}$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D, if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\frac{\forall n \ge 0 . x_n \sqsubseteq y_n}{\bigsqcup_n x_n \sqsubseteq \bigsqcup_n y_n} \quad (\langle x_n \rangle \text{ and } \langle y_n \rangle \text{ chains})$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \& n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,3} \sqsubseteq \ldots$$

Moreover

$$\bigsqcup_{m\geq 0} \left(\bigsqcup_{n\geq 0} d_{m,n} \right) = \bigsqcup_{k\geq 0} d_{k,k} = \bigsqcup_{n\geq 0} \left(\bigsqcup_{m\geq 0} d_{m,n} \right) .$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

• If D and E have least elements, then the function f is strict iff $f(\bot) = \bot$.

Tarski's Fixed Point Theorem

Let $f: D \to D$ be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

while $B \operatorname{\mathbf{do}} C$

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

```
= fix(f_{\llbracket B \rrbracket, \llbracket C \rrbracket})
= \bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^{n}(\bot)
= \lambda s \in State.
```

Topic 3

Constructions on Domains

Discrete cpo's and flat domains

For any set X, the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \qquad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

Let $X_{\perp} \stackrel{\text{def}}{=} X \cup \{\perp\}$, where \perp is some element not in X. Then

$$d \sqsubseteq d' \stackrel{\text{def}}{\Leftrightarrow} (d = d') \lor (d = \bot) \qquad (d, d' \in X_\bot)$$

makes (X_{\perp}, \sqsubseteq) into a domain (with least element \perp), called the flat domain determined by X.

Binary product of cpo's and domains

The product of two cpo's (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2\}$$

and partial order _ defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \& d_2 \sqsubseteq_2 d'_2.$$

$$\begin{array}{c|c} (x_1, x_2) \sqsubseteq (y_1, y_2) \\ \hline \\ x_1 \sqsubseteq_1 y_1 & x_2 \sqsubseteq_2 y_2 \end{array}$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}) .$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \sqsubseteq)$ and $\bot_{D_1 \times D_2} = (\bot_{D_1}, \bot_{D_2})$.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo's. A function $f:(D\times E)\to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$f(\bigsqcup_{m\geq 0} d_m, e) = \bigsqcup_{m\geq 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n\geq 0} e_n) = \bigsqcup_{n\geq 0} f(d, e_n).$$

• A couple of derived rules:

$$\frac{x \sqsubseteq x' \qquad y \sqsubseteq y'}{f(x,y) \sqsubseteq f(x',y')} \quad (f \text{ monotone})$$

$$f(\bigsqcup_{m} x_m, \bigsqcup_{n} y_n) = \bigsqcup_{k} f(x_k, y_k)$$

Function cpo's and domains

Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

$$(D \rightarrow E) \stackrel{\mathrm{def}}{=} \{ f \mid f : D \rightarrow E \text{ is a } \textit{continuous} \text{ function} \}$$

and partial order: $f \sqsubseteq f' \overset{\text{def}}{\Leftrightarrow} \forall d \in D \cdot f(d) \sqsubseteq_E f'(d)$.

A derived rule:

$$\begin{array}{ccc}
f \sqsubseteq_{(D \to E)} g & x \sqsubseteq_D y \\
f(x) \sqsubseteq g(y)
\end{array}$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

A derived rule:

$$\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right) = \bigsqcup_{k} f_{k}(x_{k})$$

If E is a domain, then so is $D \to E$ and $\bot_{D \to E}(d) = \bot_E$, all $d \in D$.

Continuity of composition

For cpo's D, E, F, the composition function

$$\circ: \big((E \to F) \times (D \to E)\big) \longrightarrow (D \to F)$$

defined by setting, for all $f \in (D \to E)$ and $g \in (E \to F)$,

$$g \circ f = \lambda d \in D.g(f(d))$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each continuous function $f \in (D \to D)$ possesses a least fixed point, $fix(f) \in D$.

Proposition. The function

$$fix:(D\to D)\to D$$

is continuous.

Topic 4

Scott Induction

Scott's Fixed Point Induction Principle

Let $f: D \to D$ be a continuous function on a domain D.

For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

$$fix(f) \in S$$
,

it suffices to prove

$$\forall d \in D \ (d \in S \Rightarrow f(d) \in S) \ .$$

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n > 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D.

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of *D* is chain-closed.

The subsets

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}$$
 and
$$\{(x,y)\in D\times D\mid x=y\}$$

of $D \times D$ are chain-closed.

Example (I): Least pre-fixed point property

Let D be a domain and let $f:D\to D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f. Then,

$$x \in \downarrow(d) \implies x \sqsubseteq d$$

$$\implies f(x) \sqsubseteq f(d)$$

$$\implies f(x) \sqsubseteq d$$

$$\implies f(x) \in \downarrow(d)$$

Hence,

$$fix(f) \in \downarrow(d)$$
.

Building chain-closed subsets (II)

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$

is an chain-closed subset of D.

Example (II)

Let D be a domain and let $f,g:D\to D$ be continuous functions such that $f\circ g\sqsubseteq g\circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies fix(f) \sqsubseteq fix(g)$$
.

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv \big(f(x) \sqsubseteq g(x)\big)$ of D.

Since

$$f(x) \sqsubseteq g(x) \Rightarrow g(f(x)) \sqsubseteq g(g(x)) \Rightarrow f(g(x)) \sqsubseteq g(g(x))$$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

Building chain-closed subsets (III)

Logical operations:

- If $S,T\subseteq D$ are chain-closed subsets of D then $S\cup T \qquad \text{and} \qquad S\cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i\in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i\in I} S_i$ is a chain-closed subset of D.
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

Example (III): Partial correctness

Let $\mathcal{F}: State \longrightarrow State$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$.

For all $x, y \geq 0$,

$$\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$$

$$\Longrightarrow \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y].$$

Recall that

$$\mathcal{F} = \mathit{fix}(f)$$
 where $f: (\mathit{State} \rightharpoonup \mathit{State}) \to (\mathit{State} \rightharpoonup \mathit{State})$ is given by
$$f(w) = \lambda(x,y) \in \mathit{State}. \ \begin{cases} (x,y) & \text{if } x \leq 0 \\ w(x-1,x \cdot y) & \text{if } x > 0 \end{cases}$$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \left\{ w \middle| \begin{array}{c} \forall x, y \ge 0. \\ w[X \mapsto x, Y \mapsto y] \downarrow \\ \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y] \end{array} \right\}$$

and show that

$$w \in S \implies f(w) \in S$$
.

Topic 5

PCF

PCF syntax

Types

$$\tau ::= nat \mid bool \mid \tau \rightarrow \tau$$

Expressions

$$egin{array}{lll} M & ::= & \mathbf{0} & | & \mathbf{succ}(M) & | & \mathbf{pred}(M) \ & | & \mathbf{true} & | & \mathbf{false} & | & \mathbf{zero}(M) \ & | & x & | & \mathbf{if} & M & \mathbf{then} & M & \mathbf{else} & M \ & | & \mathbf{fn} & x : \tau \cdot M & | & M & M & | & \mathbf{fix}(M) \end{array}$$

where $x \in \mathbb{V}$, an infinite set of variables.

Technicality: We identify expressions up to α -conversion of bound variables (created by the **fn** expression-former): by definition a PCF term is an α -equivalence class of expressions.

PCF typing relation, $\Gamma \vdash M : \tau$

- Γ is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma)$)
- M is a term
- τ is a type.

Notation:

```
M:\tau \text{ means } M \text{ is closed and } \emptyset \vdash M:\tau \text{ holds.} \mathrm{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \{M \mid M:\tau\}.
```

PCF typing relation (sample rules)

$$(:_{\text{fn}}) \quad \frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

$$(:_{app}) \frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

$$(:_{\text{fix}}) \quad \frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

Partial recursive functions in PCF

• Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Minimisation.

$$m(x) = \text{the least } y \ge 0 \text{ such that } k(x,y) = 0$$

PCF evaluation relation

takes the form

$$M \downarrow_{\tau} V$$

where

- τ is a PCF type
- $M, V \in \mathrm{PCF}_{\tau}$ are closed PCF terms of type τ
- V is a value,

$$V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \ x : \tau . M.$$

PCF evaluation (sample rules)

$$(\Downarrow_{\mathrm{val}})$$
 $V \Downarrow_{\tau} V$ $(V \text{ a value of type } \tau)$

$$(\downarrow_{\text{cbn}}) \frac{M_1 \downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau . M_1' \qquad M_1' [M_2/x] \downarrow_{\tau'} V}{M_1 M_2 \downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M \text{ fix}(M) \Downarrow_{\tau} V}{\text{fix}(M) \Downarrow_{\tau} V}$$

Contextual equivalence

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the <u>observable results</u> of executing the program.

Contextual equivalence of PCF terms

Given PCF terms M_1,M_2 , PCF type au, and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\operatorname{ctx}} M_2 : au$ is defined to hold iff

- ullet Both the typings $\Gamma \vdash M_1 : au$ and $\Gamma \vdash M_2 : au$ hold.
- For all PCF contexts $\mathcal C$ for which $\mathcal C[M_1]$ and $\mathcal C[M_2]$ are closed terms of type γ , where $\gamma=nat$ or $\gamma=bool$, and for all values $V:\gamma$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \iff \mathcal{C}[M_2] \Downarrow_{\gamma} V.$$

PCF denotational semantics — aims

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$$
.

Soundness.

For any type
$$\tau$$
, $M \downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

Adequacy.

For
$$\tau = bool$$
 or nat , $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

and symmetrically.

$$\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V
rbracket \quad (ext{soundness})$$
 $\Rightarrow \llbracket \mathcal{C}[M_2]
rbracket = \llbracket V
rbracket \quad (ext{compositionality} \quad on \llbracket M_1
rbracket = \llbracket M_2
rbracket)$ $\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \quad (ext{adequacy})$

Proof principle

To prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

? The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

$$\llbracket\Gamma \vdash M
rbracket : \llbracket\Gamma
rbracket o \llbracket au
rbracket$$

between domains.

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

$$\llbracket au o au'
Vert \stackrel{\mathrm{def}}{=} \llbracket au
Vert o \llbracket au'
Vert$$
 (function domain).

where
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
 and $\mathbb{B} = \{true, false\}$.

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\mathrm{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket$$
 (Γ -environments)

= the domain of partial functions ρ from variables to domains such that $dom(\rho)=dom(\Gamma)$ and $\rho(x)\in \llbracket\Gamma(x)\rrbracket$ for all $x\in dom(\Gamma)$

Example:

1. For the empty type environment \emptyset ,

$$\llbracket\emptyset\rrbracket=\{\,\bot\,\}$$

where \perp denotes the unique partial function with $dom(\perp) = \emptyset$.

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

3.

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket (\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathit{false} \in \llbracket \mathit{bool} \rrbracket$$

$$\llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \qquad (x \in dom(\Gamma))$$

Denotational semantics of PCF terms, II

Denotational semantics of PCF terms, III

$$\llbracket\Gamma \vdash M_1 M_2 \rrbracket(\rho) \stackrel{\text{def}}{=} (\llbracket\Gamma \vdash M_1 \rrbracket(\rho)) (\llbracket\Gamma \vdash M_2 \rrbracket(\rho))$$

Denotational semantics of PCF terms, IV

$$\begin{bmatrix} \Gamma \vdash \mathbf{fn} \ x : \tau \ . \ M \end{bmatrix} (\rho) \\
 \stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket \ . \ \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket (\rho[x \mapsto d]) \\
 \stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket . \ \Psi \cap [x \mapsto \tau] \vdash M \end{bmatrix} (\rho[x \mapsto d])$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF terms, V

$$\llbracket \Gamma \vdash \mathbf{fix}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} fix(\llbracket \Gamma \vdash M \rrbracket(\rho))$$

Recall that fix is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$$\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

$$\llbracket \emptyset dash M
rbracket : \llbracket \emptyset
rbracket o \llbracket au
rbracket$$

and, since $\llbracket \emptyset \rrbracket = \{ \perp \}$, we have

$$\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket (\bot) \in \llbracket \tau \rrbracket \qquad (M \in \mathrm{PCF}_{\tau})$$

Compositionality

```
Proposition. For all typing judgements \Gamma \vdash M : \tau and \Gamma \vdash M' : \tau, and all contexts \mathcal{C}[-] such that \Gamma' \vdash \mathcal{C}[M] : \tau' and \Gamma' \vdash \mathcal{C}[M'] : \tau',  \text{if } \llbracket \Gamma \vdash M \rrbracket = \llbracket \Gamma \vdash M' \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket  then \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket
```

Soundness

Proposition. For all closed terms $M, V \in \operatorname{PCF}_{\tau}$,

if
$$M \Downarrow_{ au} V$$
 then $\llbracket M
rbracket = \llbracket V
rbracket \in \llbracket au
rbracket$.

Substitution property

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

for all $ho \in \llbracket \Gamma
rbracket$.

In particular when
$$\Gamma=\emptyset$$
, $[\![\langle x\mapsto \tau\rangle \vdash M']\!]: [\![\tau]\!] \to [\![\tau']\!]$ and
$$[\![M'[M/x]]\!] = [\![\langle x\mapsto \tau\rangle \vdash M']\!]([\![M]\!])$$

Topic 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau . \ (\mathbf{fn} \ y : \tau . \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau . \ x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

$$\mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \not \downarrow_{\tau \to \tau} \mathbf{fn} \ x : \tau. \ x$$

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$[\![M]\!] \lhd_\tau M$$
 for all types τ and all $M \in \mathrm{PCF}_\tau$

where the formal approximation relations

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall \, V \, (\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V)}_{\text{adequacy}}$$

Definition of
$$d \lhd_{\gamma} M$$
 $(d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \lhd_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$

$$b \lhd_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$

$$\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

Proof of: $\llbracket M \rrbracket \lhd_{\gamma} M$ implies adequacy

Case $\gamma = nat$.

$$\llbracket M
rbracket = \llbracket V
rbracket$$
 $\implies \llbracket M
rbracket = \llbracket \mathbf{succ}^n(\mathbf{0})
rbracket$ for some $n \in \mathbb{N}$
 $\implies n = \llbracket M
rbracket \lhd_{\gamma} M$
 $\implies M \Downarrow \mathbf{succ}^n(\mathbf{0})$ by definition of \lhd_{nat}

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

ightharpoonup Consider the case $M=M_1\,M_2$.

→ logical definition

Definition of

$$f \lhd_{\tau \to \tau'} M \ \left(f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'} \right)$$

$$f \vartriangleleft_{\tau \to \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau}$$

$$(x \vartriangleleft_{\tau} N \Rightarrow f(x) \vartriangleleft_{\tau'} M N)$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \mathbf{fix}(M')$.

→ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$\{ d \in \llbracket \tau \rrbracket \mid d \vartriangleleft_{\tau} M \}$$

is an admissible subset of $\lceil \tau \rceil$.

Further properties

Lemma. For all types τ , elements $d, d' \in [\![\tau]\!]$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \lhd_{\tau} M$ then $d \lhd_{\tau} M$.
- 2. If $d \lhd_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \lhd_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

→ substitutivity property for open terms

Fundamental property

Theorem. For all
$$\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$$
 and all $\Gamma \vdash M : \tau$, if $d_1 \lhd_{\tau_1} M_1, \dots, d_n \lhd_{\tau_n} M_n$ then $[\![\Gamma \vdash M]\!][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \lhd_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

$$\llbracket M \rrbracket \lhd_{\tau} M$$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

$$\rho \lhd_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \lhd_{\tau} M[\sigma]$$

- \bullet $\rho \lhd_{\Gamma} \sigma$ means that $\rho(x) \lhd_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- ullet Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type γ , where $\gamma = nat$ or $\gamma = bool$, and for all values $V \in \mathrm{PCF}_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

Extensionality properties of \leq_{ctx}

At a ground type
$$\gamma \in \{bool, nat\}$$
,
$$M_1 \leq_{\operatorname{ctx}} M_2 : \gamma \text{ holds if and only if}$$

$$\forall \, V \in \operatorname{PCF}_{\gamma} \left(M_1 \Downarrow_{\gamma} V \implies M_2 \Downarrow_{\gamma} V \right) \;.$$
 At a function type $\tau \to \tau'$,
$$M_1 \leq_{\operatorname{ctx}} M_2 : \tau \to \tau' \text{ holds if and only if}$$

$$\forall \, M \in \operatorname{PCF}_{\tau} \left(M_1 \, M \leq_{\operatorname{ctx}} M_2 \, M : \tau' \right) \;.$$

Topic 8

Full Abstraction

Proof principle

For all types au and closed terms $M_1, M_2 \in \mathrm{PCF}_{ au}$,

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket \implies M_1 \cong_{\operatorname{ctx}} M_2 : \tau .$$

Hence, to prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$.

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

► The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

$$T_1, T_2 \in \mathrm{PCF}_{(bool \to (bool \to bool)) \to bool}$$

such that

$$T_1 \cong_{\operatorname{ctx}} T_2$$

and

$$[\![T_1]\!] \neq [\![T_2]\!]$$

lacktriangle We achieve $T_1 \cong_{\operatorname{ctx}} T_2$ by making sure that

$$\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not\downarrow_{bool} \& T_2 M \not\downarrow_{bool})$$

Hence,

$$[\![T_1]\!]([\![M]\!]) = \bot = [\![T_2]\!]([\![M]\!])$$

for all $M \in \mathrm{PCF}_{bool \to (bool \to bool)}$.

lacktriangle We achieve $\llbracket T_1 \rrbracket
eq \llbracket T_2 \rrbracket$ by making sure that

$$[T_1](por) \neq [T_2](por)$$

for some *non-definable* continuous function

$$por \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}))$$
.

Parallel-or function

is the unique continuous function $por: \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$ such that

```
por true \perp = true
por \perp true = true
por false false = false
```

In which case, it necessarily follows by monotonicity that

Undefinability of parallel-or

Proposition. There is no closed PCF term

$$P:bool \rightarrow (bool \rightarrow bool)$$

satisfying

$$\llbracket P \rrbracket = por : \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$$
.

Parallel-or test functions

```
For i=1,2 define
       T_i \stackrel{\mathrm{def}}{=} \mathbf{fn} \ f: bool \rightarrow (bool \rightarrow bool) \ .
                            if (f \mathbf{true} \Omega) \mathbf{then}
                                if (f \Omega \text{ true}) then
                                     if (f false false) then \Omega else B_i
                                 else \Omega
                             else \Omega
where B_1 \stackrel{\text{def}}{=} \mathbf{true}, B_2 \stackrel{\text{def}}{=} \mathbf{false},
and \Omega \stackrel{\text{def}}{=} \mathbf{fix}(\mathbf{fn} \, x : bool.x).
```

Failure of full abstraction

Proposition.

$$T_1 \cong_{\operatorname{ctx}} T_2 : (bool \to (bool \to bool)) \to bool$$

$$\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket \in (\mathbb{B}_\perp \to (\mathbb{B}_\perp \to \mathbb{B}_\perp)) \to \mathbb{B}_\perp$$

PCF+por

Expressions
$$M::=\cdots \mid \mathbf{por}(M,M)$$

Typing $\frac{\Gamma dash M_1:bool \ \Gamma dash M_2:bool}{\Gamma dash \mathbf{por}(M_1,M_2):bool}$

Evaluation

Plotkin's full abstraction result

The denotational semantics of PCF+por is given by extending that of PCF with the clause

$$\llbracket\Gamma \vdash \mathbf{por}(M_1, M_2)\rrbracket(\rho) \stackrel{\text{def}}{=} por(\llbracket\Gamma \vdash M_1\rrbracket(\rho)) (\llbracket\Gamma \vdash M_2\rrbracket(\rho))$$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

$$\Gamma \vdash M_1 \cong_{\operatorname{ctx}} M_2 : \tau \iff \llbracket \Gamma \vdash M_1 \rrbracket = \llbracket \Gamma \vdash M_2 \rrbracket.$$