
Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

56



Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

56



Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

56



Topic 5

PCF

61



PCF syntax

Types

τ ::= nat | bool | τ → τ

62



PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

62



PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.

Technicality : We identify expressions up to α-conversion of

bound variables (created by the fn expression-former): by

definition a PCF term is an α-equivalence class of expressions.

62



PCF typing relation, Γ ⊢ M : τ

• Γ is a type environment, i.e. a finite partial function mapping

variables to types (whose domain of definition is denoted

dom(Γ))

• M is a term

• τ is a type.

Notation:

M : τ means M is closed and ∅ ⊢ M : τ holds.

PCFτ
def
= {M | M : τ}.

63



PCF typing relation (sample rules)

(:fn)
Γ[x 7→ τ ] ⊢ M : τ ′

Γ ⊢ fnx : τ .M : τ → τ ′
if x /∈ dom(Γ)

(:app)
Γ ⊢ M1 : τ → τ ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ
′

(:fix)
Γ ⊢ M : τ → τ

Γ ⊢ fix(M) : τ

64



Partial recursive functions in PCF

• Primitive recursion.
{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))

65





Partial recursive functions in PCF

• Primitive recursion.
{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))

• Minimisation.

m(x) = the least y ≥ 0 such that k(x, y) = 0

65



PCF evaluation relation

takes the form

M ⇓τ V

where

• τ is a PCF type

• M,V ∈ PCFτ are closed PCF terms of type τ

• V is a value,

V ::= 0 | succ(V ) | true | false | fnx : τ .M .

66



PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )

(⇓cbn)
M1 ⇓τ→τ ′ fnx : τ .M ′

1 M ′
1[M2/x] ⇓τ ′ V

M1M2 ⇓τ ′ V

67



PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )

(⇓cbn)
M1 ⇓τ→τ ′ fnx : τ .M ′

1 M ′
1[M2/x] ⇓τ ′ V

M1M2 ⇓τ ′ V

(⇓fix)
M fix(M) ⇓τ V

fix(M) ⇓τ V

67



Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

68



Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.

69



PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy.

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .

70


